Isomorphy Classes of Involutions of SO(n, k, β), n>2
Journal of Lie theory, Tome 26 (2016) no. 2, pp. 383-438
Cet article a éte moissonné depuis la source Heldermann Verlag
A first characterization of the isomorphism classes of k-involutions for any reductive algebraic group defined over a perfect field was given by A. G. Helminck [On the classification of k-involutions I, Adv. in Math. 153 (2000) 1--117] using $3$ invariants. In another paper by A. G. Helminck, L. Wu and C. Dometrius [Involutions of Sl(n, k), (n > 2), Acta Appl. Math. 90 (2006) 91--119] a full classification of all k-involutions on SL(n,k) for k algebraically closed, the real numbers, the p-adic numbers or a finite field was provided. In a paper by R. W. Benim, A. G. Helminck and F. Jackson Ward [Isomorphy classes of involutions of Sp(2n,k), n>2, J. of Lie Theory 25 (2015) 903--947] a similar classification was given for all k-involutions of SP(2n,k).
Classification :
14M15, 20G05, 20G15, 20K30
Mots-clés : Orthogonal Group, symmetric spaces, involutions, inner automophisms
Mots-clés : Orthogonal Group, symmetric spaces, involutions, inner automophisms
@article{JLT_2016_26_2_JLT_2016_26_2_a3,
author = {R. W. Benim and C. E. Dometrius and A. G. Helminck and L. Wu},
title = {Isomorphy {Classes} of {Involutions} of {SO(n,} k, \ensuremath{\beta}), n>2},
journal = {Journal of Lie theory},
pages = {383--438},
year = {2016},
volume = {26},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a3/}
}
TY - JOUR AU - R. W. Benim AU - C. E. Dometrius AU - A. G. Helminck AU - L. Wu TI - Isomorphy Classes of Involutions of SO(n, k, β), n>2 JO - Journal of Lie theory PY - 2016 SP - 383 EP - 438 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a3/ ID - JLT_2016_26_2_JLT_2016_26_2_a3 ER -
R. W. Benim; C. E. Dometrius; A. G. Helminck; L. Wu. Isomorphy Classes of Involutions of SO(n, k, β), n>2. Journal of Lie theory, Tome 26 (2016) no. 2, pp. 383-438. http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a3/