Isomorphy Classes of Involutions of SO(n, k, β), n>2
Journal of Lie theory, Tome 26 (2016) no. 2, pp. 383-438 Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

A first characterization of the isomorphism classes of k-involutions for any reductive algebraic group defined over a perfect field was given by A. G. Helminck [On the classification of k-involutions I, Adv. in Math. 153 (2000) 1--117] using $3$ invariants. In another paper by A. G. Helminck, L. Wu and C. Dometrius [Involutions of Sl(n, k), (n > 2), Acta Appl. Math. 90 (2006) 91--119] a full classification of all k-involutions on SL(n,k) for k algebraically closed, the real numbers, the p-adic numbers or a finite field was provided. In a paper by R. W. Benim, A. G. Helminck and F. Jackson Ward [Isomorphy classes of involutions of Sp(2n,k), n>2, J. of Lie Theory 25 (2015) 903--947] a similar classification was given for all k-involutions of SP(2n,k).
Classification : 14M15, 20G05, 20G15, 20K30
Mots-clés : Orthogonal Group, symmetric spaces, involutions, inner automophisms
@article{JLT_2016_26_2_JLT_2016_26_2_a3,
     author = {R. W. Benim and C. E. Dometrius and A. G. Helminck and L. Wu},
     title = {Isomorphy {Classes} of {Involutions} of {SO(n,} k, \ensuremath{\beta}), n>2},
     journal = {Journal of Lie theory},
     pages = {383--438},
     year = {2016},
     volume = {26},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a3/}
}
TY  - JOUR
AU  - R. W. Benim
AU  - C. E. Dometrius
AU  - A. G. Helminck
AU  - L. Wu
TI  - Isomorphy Classes of Involutions of SO(n, k, β), n>2
JO  - Journal of Lie theory
PY  - 2016
SP  - 383
EP  - 438
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a3/
ID  - JLT_2016_26_2_JLT_2016_26_2_a3
ER  - 
%0 Journal Article
%A R. W. Benim
%A C. E. Dometrius
%A A. G. Helminck
%A L. Wu
%T Isomorphy Classes of Involutions of SO(n, k, β), n>2
%J Journal of Lie theory
%D 2016
%P 383-438
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a3/
%F JLT_2016_26_2_JLT_2016_26_2_a3
R. W. Benim; C. E. Dometrius; A. G. Helminck; L. Wu. Isomorphy Classes of Involutions of SO(n, k, β), n>2. Journal of Lie theory, Tome 26 (2016) no. 2, pp. 383-438. http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a3/