Deformation of discontinuous groups acting on (H2n+1 × H2n+1) / Δ
Journal of Lie theory, Tome 26 (2016) no. 2, pp. 371-382 Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

Let $H_{2n+1}$ be the $(2n+1)$-dimensional Heisenberg group and $\Delta$ the diagonal subgroup of the product $P:=H_{2n+1}\times H_{2n+1}$. Given any discontinuous group $\Gamma$ for $P/\Delta$, we study some local geometric and topological features of the associated deformation space ${\cal T}(\Gamma,P;P/\Delta)$ such as rigidity, stability and Hausdorffness. In particular, we show that ${\cal T}(\Gamma,P;P/\Delta)$ is a Hausdorff space if and only if $\Gamma$ is a cocompact abelian discontinuous group for $P/\Delta$.
Classification : 22E27, 32G05
Mots-clés : Heisenberg group, proper action, free action, rigidity, stability
@article{JLT_2016_26_2_JLT_2016_26_2_a2,
     author = {S. Dhieb},
     title = {Deformation of discontinuous groups acting on {(H\protect\textsubscript{2n+1}} {\texttimes} {H\protect\textsubscript{2n+1})} / {\ensuremath{\Delta}}},
     journal = {Journal of Lie theory},
     pages = {371--382},
     year = {2016},
     volume = {26},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a2/}
}
TY  - JOUR
AU  - S. Dhieb
TI  - Deformation of discontinuous groups acting on (H2n+1 × H2n+1) / Δ
JO  - Journal of Lie theory
PY  - 2016
SP  - 371
EP  - 382
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a2/
ID  - JLT_2016_26_2_JLT_2016_26_2_a2
ER  - 
%0 Journal Article
%A S. Dhieb
%T Deformation of discontinuous groups acting on (H2n+1 × H2n+1) / Δ
%J Journal of Lie theory
%D 2016
%P 371-382
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a2/
%F JLT_2016_26_2_JLT_2016_26_2_a2
S. Dhieb. Deformation of discontinuous groups acting on (H2n+1 × H2n+1) / Δ. Journal of Lie theory, Tome 26 (2016) no. 2, pp. 371-382. http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a2/