Integrating Infinitesimal (Super) Actions
Journal of Lie theory, Tome 26 (2016) no. 2, pp. 297-358
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We generalize some results of Richard Palais to the case of Lie supergroups and Lie superalgebras. More precisely, let G be a Lie supergroup, g its Lie superalgebra and let ρ be an infinitesimal action (a representation) of g on a supermanifold M. We will show that there always exists a local (smooth left) action of G on M such that ρ is the map that associates the fundamental vector field on M to an algebra element (we will say that the action integrates ρ). We also show that if ρ is univalent, then there exists a unique maximal local action of G on M integrating ρ. And finally we show that if G is simply connected and all (smooth, even) vector fields ρ(X) are complete then there exists a global (smooth left) action of G on M integrating ρ. Omitting all references to the super setting will turn our proofs into variations of those of Palais.
Classification : 58A50, 57S20, 58C50
Mots-clés : Supermanifolds, Lie superalgebras, Lie supergroups, infinitesimal local group actions
@article{JLT_2016_26_2_JLT_2016_26_2_a0,
     author = {G. M. Tuynman},
     title = {Integrating {Infinitesimal} {(Super)} {Actions}},
     journal = {Journal of Lie theory},
     pages = {297--358},
     year = {2016},
     volume = {26},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a0/}
}
TY  - JOUR
AU  - G. M. Tuynman
TI  - Integrating Infinitesimal (Super) Actions
JO  - Journal of Lie theory
PY  - 2016
SP  - 297
EP  - 358
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a0/
ID  - JLT_2016_26_2_JLT_2016_26_2_a0
ER  - 
%0 Journal Article
%A G. M. Tuynman
%T Integrating Infinitesimal (Super) Actions
%J Journal of Lie theory
%D 2016
%P 297-358
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a0/
%F JLT_2016_26_2_JLT_2016_26_2_a0
G. M. Tuynman. Integrating Infinitesimal (Super) Actions. Journal of Lie theory, Tome 26 (2016) no. 2, pp. 297-358. http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a0/