Jordan Geometries -- an Approach Via Inversions
Journal of Lie theory, Tome 24 (2014) no. 4, pp. 1067-1113.

Voir la notice de l'article provenant de la source Heldermann Verlag

Jordan geometries are defined as spaces X equipped with point reflections Jaxz depending on triples of points (x,a,z), exchanging x and z and fixing a. In a similar way, symmetric spaces have been defined by O. Loos as spaces equipped with point reflections Sx fixing x, and therefore the theories of Jordan geometries and of symmetric spaces are closely related to each other. In order to describe this link, the notion of inversive action of torsors and of symmetric spaces is introduced. Jordan geometries give rise both to inversive actions of certain abelian torsors and of certain symmetric spaces, which in a sense are dual to each other. By using an algebraic differential calculus generalizing the classical Weil functors, we attach a tangent object to such geometries, namely a Jordan pair, respectively, a Jordan algebra. The present approach works equally well over base rings in which 2 is not invertible (and in particular over Z), and hence can be seen as a globalization of quadratic Jordan pairs; it also has a very transparent relation with the theory of associative geometries as developed by M. Kinyon and the author.
Classification : 17C37, 16W10, 32M15, 51C05, 53C35
Mots-clés : Inversion, torsor, symmetric space, inversive action, generalized projective geometry, Jordan algebra, Jordan pair, associative algebra, Lie algebra, modular group
@article{JLT_2014_24_4_JLT_2014_24_4_a8,
     author = {W. Bertram },
     title = {Jordan {Geometries} -- an {Approach} {Via} {Inversions}},
     journal = {Journal of Lie theory},
     pages = {1067--1113},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_4_JLT_2014_24_4_a8/}
}
TY  - JOUR
AU  - W. Bertram 
TI  - Jordan Geometries -- an Approach Via Inversions
JO  - Journal of Lie theory
PY  - 2014
SP  - 1067
EP  - 1113
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2014_24_4_JLT_2014_24_4_a8/
ID  - JLT_2014_24_4_JLT_2014_24_4_a8
ER  - 
%0 Journal Article
%A W. Bertram 
%T Jordan Geometries -- an Approach Via Inversions
%J Journal of Lie theory
%D 2014
%P 1067-1113
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2014_24_4_JLT_2014_24_4_a8/
%F JLT_2014_24_4_JLT_2014_24_4_a8
W. Bertram . Jordan Geometries -- an Approach Via Inversions. Journal of Lie theory, Tome 24 (2014) no. 4, pp. 1067-1113. http://geodesic.mathdoc.fr/item/JLT_2014_24_4_JLT_2014_24_4_a8/