Branching Laws of Parabolic Verma Modules for Non-symmetric Polar Pairs
Journal of Lie theory, Tome 24 (2014) no. 4, pp. 1047-1066
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\g{{\frak g}} \def\C{{\Bbb C}} We give branching formulas from so$(7,\C)$ to $\g_2$ for parabolic Verma modules attached to $\g_2$-compatible parabolic subalgebras of so$(7,\C)$, and branching formulas from $\g_2$ to sl$(3,\C)$ for parabolic Verma modules attached to sl$(3,\C)$-compatible parabolic subalgebras of $\g_2$ respectively, under some assumptions on the parameters of parabolic Verma modules.
Classification :
17B10
Mots-clés : Branching law, parabolic Verma module, polar pair, Lie algebra
Mots-clés : Branching law, parabolic Verma module, polar pair, Lie algebra
@article{JLT_2014_24_4_JLT_2014_24_4_a7,
author = {H. He },
title = {Branching {Laws} of {Parabolic} {Verma} {Modules} for {Non-symmetric} {Polar} {Pairs}},
journal = {Journal of Lie theory},
pages = {1047--1066},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_4_JLT_2014_24_4_a7/}
}
H. He . Branching Laws of Parabolic Verma Modules for Non-symmetric Polar Pairs. Journal of Lie theory, Tome 24 (2014) no. 4, pp. 1047-1066. http://geodesic.mathdoc.fr/item/JLT_2014_24_4_JLT_2014_24_4_a7/