Existence of Lattices on General H-Type Groups
Journal of Lie theory, Tome 24 (2014) no. 4, pp. 979-1011.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $\cal N$ be a two step nilpotent Lie algebra endowed with non-degenerate scalar product $\langle\cdot \,,\cdot\rangle$ and let ${\cal N}=V\oplus_{\perp}Z$, where $Z$ is the center of the Lie algebra and $V$ its orthogonal complement with respect to the scalar product. We prove that if $(V,\langle\cdot\,,\cdot\rangle_V)$ is the Clifford module for the Clifford algebra ${\rm Cl} (Z,\langle\cdot\,,\cdot\rangle_Z)$ such that the homomorphism $J\colon {\rm Cl}(Z,\langle\cdot\,,\cdot\rangle_Z)\to{\rm End}(V)$ is skew symmetric with respect to the scalar product $\langle\cdot\,,\cdot\rangle_V$, or in other words the Lie algebra $\cal N$ satisfies conditions of general $H$-type Lie algebras [see P. Ciatti, Scalar products on Clifford modules and pseudo-H-type Lie algebras, Math. Nachr. 202 (2009) 44--68; and: M. Godoy Molina, A. Korolko and I. Markina, Sub-semi-Riemannian geometry of general $H$-type groups, Bull. Sci. Math. 137 (2013) 805--833], then there is a basis with respect to which the structural constants of the Lie algebra $\cal N$ are all $\pm 1$ or $0$.
Classification : 17B30, 22E25
Mots-clés : Clifford module, nilpotent two step algebra, lattice, general H-type algebras
@article{JLT_2014_24_4_JLT_2014_24_4_a4,
     author = {K. Furutani and I. Markina },
     title = {Existence of {Lattices} on {General} {H-Type} {Groups}},
     journal = {Journal of Lie theory},
     pages = {979--1011},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_4_JLT_2014_24_4_a4/}
}
TY  - JOUR
AU  - K. Furutani
AU  - I. Markina 
TI  - Existence of Lattices on General H-Type Groups
JO  - Journal of Lie theory
PY  - 2014
SP  - 979
EP  - 1011
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2014_24_4_JLT_2014_24_4_a4/
ID  - JLT_2014_24_4_JLT_2014_24_4_a4
ER  - 
%0 Journal Article
%A K. Furutani
%A I. Markina 
%T Existence of Lattices on General H-Type Groups
%J Journal of Lie theory
%D 2014
%P 979-1011
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2014_24_4_JLT_2014_24_4_a4/
%F JLT_2014_24_4_JLT_2014_24_4_a4
K. Furutani; I. Markina . Existence of Lattices on General H-Type Groups. Journal of Lie theory, Tome 24 (2014) no. 4, pp. 979-1011. http://geodesic.mathdoc.fr/item/JLT_2014_24_4_JLT_2014_24_4_a4/