A Geometric Mean for Symmetric Spaces of Noncompact Type
Journal of Lie theory, Tome 24 (2014) no. 3, pp. 725-736
Voir la notice de l'article provenant de la source Heldermann Verlag
The concept of the t-geometric mean of two positive definite matrices is extended to symmetric spaces of noncompact type. The t-geometric mean of two points in such a symmetric space yields the unique geodesic joining the points and the geometric mean is the midpoint. A parametrization of the geodesic in terms of the two points is given. Inequalities about geometric mean and geodesic triangle are given in terms of Kostant's pre-order on semisimple Lie groups as well as on their Lie algebras.
Classification :
15A45, 15A48, 53C35
Mots-clés : Geometric mean, positive definite matrices, symmetric spaces, semisimple Lie groups, geodesics, log majorization, Kostant's order
Mots-clés : Geometric mean, positive definite matrices, symmetric spaces, semisimple Lie groups, geodesics, log majorization, Kostant's order
@article{JLT_2014_24_3_JLT_2014_24_3_a6,
author = {M. Liao and X. Liu and T.-Y. Tam },
title = {A {Geometric} {Mean} for {Symmetric} {Spaces} of {Noncompact} {Type}},
journal = {Journal of Lie theory},
pages = {725--736},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a6/}
}
TY - JOUR AU - M. Liao AU - X. Liu AU - T.-Y. Tam TI - A Geometric Mean for Symmetric Spaces of Noncompact Type JO - Journal of Lie theory PY - 2014 SP - 725 EP - 736 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a6/ ID - JLT_2014_24_3_JLT_2014_24_3_a6 ER -
M. Liao; X. Liu; T.-Y. Tam . A Geometric Mean for Symmetric Spaces of Noncompact Type. Journal of Lie theory, Tome 24 (2014) no. 3, pp. 725-736. http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a6/