The Derived Algebra of a Stabilizer, Families of Coadjoint Orbits, and Sheets
Journal of Lie theory, Tome 24 (2014) no. 3, pp. 705-714
Voir la notice de l'article provenant de la source Heldermann Verlag
Let g be a finite-dimensional real or complex Lie algebra, and let μ be an element of g*. In the first part of the paper, we discuss the relation between the derived Lie algebra of the stabilizer of μ and the set of coadjoint orbits which have the same dimension as the orbit of μ. In the second part, we consider semisimple Lie algebras and discuss the relation between the derived algebra of a centralizer and sheets.
Classification :
17B20
Mots-clés : Lie algebras, sheets, derived algebra of a centralizer
Mots-clés : Lie algebras, sheets, derived algebra of a centralizer
@article{JLT_2014_24_3_JLT_2014_24_3_a4,
author = {A. Izosimov },
title = {The {Derived} {Algebra} of a {Stabilizer,} {Families} of {Coadjoint} {Orbits,} and {Sheets}},
journal = {Journal of Lie theory},
pages = {705--714},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a4/}
}
TY - JOUR AU - A. Izosimov TI - The Derived Algebra of a Stabilizer, Families of Coadjoint Orbits, and Sheets JO - Journal of Lie theory PY - 2014 SP - 705 EP - 714 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a4/ ID - JLT_2014_24_3_JLT_2014_24_3_a4 ER -
A. Izosimov . The Derived Algebra of a Stabilizer, Families of Coadjoint Orbits, and Sheets. Journal of Lie theory, Tome 24 (2014) no. 3, pp. 705-714. http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a4/