The Derived Algebra of a Stabilizer, Families of Coadjoint Orbits, and Sheets
Journal of Lie theory, Tome 24 (2014) no. 3, pp. 705-714.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let g be a finite-dimensional real or complex Lie algebra, and let μ be an element of g*. In the first part of the paper, we discuss the relation between the derived Lie algebra of the stabilizer of μ and the set of coadjoint orbits which have the same dimension as the orbit of μ. In the second part, we consider semisimple Lie algebras and discuss the relation between the derived algebra of a centralizer and sheets.
Classification : 17B20
Mots-clés : Lie algebras, sheets, derived algebra of a centralizer
@article{JLT_2014_24_3_JLT_2014_24_3_a4,
     author = {A. Izosimov },
     title = {The {Derived} {Algebra} of a {Stabilizer,} {Families} of {Coadjoint} {Orbits,} and {Sheets}},
     journal = {Journal of Lie theory},
     pages = {705--714},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a4/}
}
TY  - JOUR
AU  - A. Izosimov 
TI  - The Derived Algebra of a Stabilizer, Families of Coadjoint Orbits, and Sheets
JO  - Journal of Lie theory
PY  - 2014
SP  - 705
EP  - 714
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a4/
ID  - JLT_2014_24_3_JLT_2014_24_3_a4
ER  - 
%0 Journal Article
%A A. Izosimov 
%T The Derived Algebra of a Stabilizer, Families of Coadjoint Orbits, and Sheets
%J Journal of Lie theory
%D 2014
%P 705-714
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a4/
%F JLT_2014_24_3_JLT_2014_24_3_a4
A. Izosimov . The Derived Algebra of a Stabilizer, Families of Coadjoint Orbits, and Sheets. Journal of Lie theory, Tome 24 (2014) no. 3, pp. 705-714. http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a4/