On Properties of Principal Elements of Frobenius Lie Algebras
Journal of Lie theory, Tome 24 (2014) no. 3, pp. 849-864
Voir la notice de l'article provenant de la source Heldermann Verlag
We investigate the properties of principal elements of Frobenius Lie algebras. We prove that any Lie algebra with a left symmetric algebra structure can be embedded as a subalgebra of some sl(m,K) where K are the real R or the complex numbers C. Hence, the work of Belavin and Drinfeld on solutions of the Classical Yang-Baxter Equation on simple Lie algebras, applied to the particular case of sl(m,K) alone, paves the way to the complete classification of Frobenius and more generally quasi-Frobenius Lie algebras. We prove that, if a Frobenius Lie algebra has the property that every derivation is an inner derivation, then every principal element is semisimple. As an important case, we prove that in the Lie algebra of the group of affine motions of the Euclidean space of finite dimension, every derivation is inner. We also bring examples of Frobenius Lie algebras that are subalgebras of sl(m,K), but nevertheless have nonsemisimple principal elements as well as some with semisimple principal elements having nonrational eigenvalues, where K=R or C.
Classification :
17B05, 17B08, 22E60
Mots-clés : Frobenius Lie algebra, affine Lie algebra, left symmetric algebra, invariant affine connection, classical Yang Baxter equation, affine motion, symplectic Lie algebra, K�hler algebra, seaweed Lie algebra
Mots-clés : Frobenius Lie algebra, affine Lie algebra, left symmetric algebra, invariant affine connection, classical Yang Baxter equation, affine motion, symplectic Lie algebra, K�hler algebra, seaweed Lie algebra
@article{JLT_2014_24_3_JLT_2014_24_3_a11,
author = {A. Diatta and B. Manga },
title = {On {Properties} of {Principal} {Elements} of {Frobenius} {Lie} {Algebras}},
journal = {Journal of Lie theory},
pages = {849--864},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a11/}
}
TY - JOUR AU - A. Diatta AU - B. Manga TI - On Properties of Principal Elements of Frobenius Lie Algebras JO - Journal of Lie theory PY - 2014 SP - 849 EP - 864 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a11/ ID - JLT_2014_24_3_JLT_2014_24_3_a11 ER -
A. Diatta; B. Manga . On Properties of Principal Elements of Frobenius Lie Algebras. Journal of Lie theory, Tome 24 (2014) no. 3, pp. 849-864. http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a11/