Lifting Automorphisms of Quotients of Adjoint Representations
Journal of Lie theory, Tome 24 (2014) no. 3, pp. 625-639.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} Let $\g_i$ be a simple complex Lie algebra, $1\leq i \leq d$, and let $G=G_1\times\dots\times G_d$ be the corresponding adjoint group. Consider the $G$-module $V=\oplus r_i\g_i$ where $r_i\in\mathbb{N}$ for all $i$. We say that $V$ is {\it large} if all $r_i\geq 2$ and $r_i\geq 3$ if $G_i$ has rank 1. In ``Quotients, automorphisms and differential operators'', http://arxiv.org/abs/1201.6369 (2012), we showed that when $V$ is large any algebraic automorphism $\psi$ of the quotient $Z:=V/\!\!/G$ lifts to an algebraic mapping $\Psi\colon V\to V$ which sends the fiber over $z$ to the fiber over $\psi(z)$, $z\in Z$. (Most cases were already handled in J.~Kuttler, Lifting automorphisms of generalized adjoint quotients, Transformation Groups {\bf16} (2011) 1115--1135.)\ We also showed that one can choose a biholomorphic lift $\Psi$ such that $\Psi(gv)=\sigma(g)\Psi(v)$, $g\in G$, $v\in V$, where $\sigma$ is an automorphism of $G$. This leaves open the following questions: Can one lift holomorphic automorphisms of $Z$? Which automorphisms lift if $V$ is not large? We answer the first question in the affirmative and also answer the second question. Part of the proof involves establishing the following result for $V$ large: Any algebraic differential operator of order $k$ on $Z$ lifts to a $G$-invariant algebraic differential operator of order $k$ on $V$. We also consider the analogues of the questions above for actions of compact Lie groups.
Classification : 20G20, 22E46, 57S15
Mots-clés : Differential operators, automorphisms, quotients, adjoint representation
@article{JLT_2014_24_3_JLT_2014_24_3_a0,
     author = {G. W. Schwarz },
     title = {Lifting {Automorphisms} of {Quotients} of {Adjoint} {Representations}},
     journal = {Journal of Lie theory},
     pages = {625--639},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a0/}
}
TY  - JOUR
AU  - G. W. Schwarz 
TI  - Lifting Automorphisms of Quotients of Adjoint Representations
JO  - Journal of Lie theory
PY  - 2014
SP  - 625
EP  - 639
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a0/
ID  - JLT_2014_24_3_JLT_2014_24_3_a0
ER  - 
%0 Journal Article
%A G. W. Schwarz 
%T Lifting Automorphisms of Quotients of Adjoint Representations
%J Journal of Lie theory
%D 2014
%P 625-639
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a0/
%F JLT_2014_24_3_JLT_2014_24_3_a0
G. W. Schwarz . Lifting Automorphisms of Quotients of Adjoint Representations. Journal of Lie theory, Tome 24 (2014) no. 3, pp. 625-639. http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a0/