Weyl Modules and Levi Subalgebras
Journal of Lie theory, Tome 24 (2014) no. 2, pp. 503-527
Voir la notice de l'article provenant de la source Heldermann Verlag
For a simple complex Lie algebra g of classical type we are studying the restriction of modules of the current algebra to the current algebra of a Levi subalgebra of g. More precisely, we are studying the highest weight components of simple modules, global and local Weyl modules. We are identifying necessary and sufficient conditions on a pair of a Levi subalgebra and a dominant integral weight, such that the highest weight component of the restricted module is a global (resp., a local) Weyl module.
Classification :
17B10, 17B67
Mots-clés : Weyl modules, Levi subalgebra, Current algebra
Mots-clés : Weyl modules, Levi subalgebra, Current algebra
@article{JLT_2014_24_2_JLT_2014_24_2_a9,
author = {G. Fourier },
title = {Weyl {Modules} and {Levi} {Subalgebras}},
journal = {Journal of Lie theory},
pages = {503--527},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a9/}
}
G. Fourier . Weyl Modules and Levi Subalgebras. Journal of Lie theory, Tome 24 (2014) no. 2, pp. 503-527. http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a9/