Borel-de Siebenthal Discrete Series and Associated Holomorphic Discrete Series
Journal of Lie theory, Tome 24 (2014) no. 2, pp. 475-501
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $G_0$ be a simply connected non-compact real simple Lie group with maximal compact subgroup $K_0$. Assume that rank$(G_0)$ = rank$(K_0)$ so that $G_0$ has discrete series representations. If $G_0/K_0$ is Hermitian symmetric, one has a relatively simple discrete series of $G_0$, namely the holomorphic discrete series of $G_0$. Now assume that $G_0/K_0$ is not a Hermitian symmetric space. In this case, one has the class of Borel-de Siebenthal discrete series of $G_0$ defined in a manner analogous to the holomorphic discrete series. We consider a certain circle subgroup of $K_0$ whose centralizer $L_0$ is such that $K_0/L_0$ is an irreducible compact Hermitian symmetric space. Let $K_0^*$ be the dual of $K_0$ with respect to $L_0$. Then $K_0^*/L_0$ is an irreducible non-compact Hermitian symmetric space dual to $K_0/L_0$. In this article, to each Borel-de Siebenthal discrete series of $G_0$, we will associate a holomorphic discrete series of $K_0^*$. Then we show the occurrence of infinitely many common $L_0$-types between these two discrete series under certain conditions.
Classification :
22E46, 17B10
Mots-clés : Discrete series, admissibility, relative invariants, branching rule, LS-paths
Mots-clés : Discrete series, admissibility, relative invariants, branching rule, LS-paths
@article{JLT_2014_24_2_JLT_2014_24_2_a8,
author = {P. Paul and K. N. Raghavan and P. Sankaran },
title = {Borel-de {Siebenthal} {Discrete} {Series} and {Associated} {Holomorphic} {Discrete} {Series}},
journal = {Journal of Lie theory},
pages = {475--501},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a8/}
}
TY - JOUR AU - P. Paul AU - K. N. Raghavan AU - P. Sankaran TI - Borel-de Siebenthal Discrete Series and Associated Holomorphic Discrete Series JO - Journal of Lie theory PY - 2014 SP - 475 EP - 501 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a8/ ID - JLT_2014_24_2_JLT_2014_24_2_a8 ER -
%0 Journal Article %A P. Paul %A K. N. Raghavan %A P. Sankaran %T Borel-de Siebenthal Discrete Series and Associated Holomorphic Discrete Series %J Journal of Lie theory %D 2014 %P 475-501 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a8/ %F JLT_2014_24_2_JLT_2014_24_2_a8
P. Paul; K. N. Raghavan; P. Sankaran . Borel-de Siebenthal Discrete Series and Associated Holomorphic Discrete Series. Journal of Lie theory, Tome 24 (2014) no. 2, pp. 475-501. http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a8/