Heat Kernel Analysis for Bessel Operators on Symmetric Cones
Journal of Lie theory, Tome 24 (2014) no. 2, pp. 373-396.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\C{{\Bbb C}} \def\R{{\Bbb R}} We investigate the heat equation corresponding to the Bessel operators on a symmetric cone $\Omega=G/K$. These operators form a one-parameter family of elliptic self-adjoint second order differential operators and occur in the Lie algebra action of certain unitary highest weight representations. The heat kernel is explicitly given in terms of a multivariable $I$-Bessel function on $\Omega$. Its corresponding heat kernel transform defines a continuous linear operator between $L^p$-spaces. The unitary image of the $L^2$-space under the heat kernel transform is characterized as a weighted Bergman space on the complexification $G_\C/K_\C$ of $\Omega$, the weight being expressed explicitly in terms of a multivariable $K$-Bessel function on $\Omega$. Even in the special case of the symmetric cone $\Omega=\R_+$ these results seem to be new.
Classification : 58J35, 22E45, 30H20, 33C70
Mots-clés : Heat kernel transform, Segal-Bargmann transform, symmetric cone, Bergman space, Bessel operator, Bessel function
@article{JLT_2014_24_2_JLT_2014_24_2_a3,
     author = {J. M�llers },
     title = {Heat {Kernel} {Analysis} for {Bessel} {Operators} on {Symmetric} {Cones}},
     journal = {Journal of Lie theory},
     pages = {373--396},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a3/}
}
TY  - JOUR
AU  - J. M�llers 
TI  - Heat Kernel Analysis for Bessel Operators on Symmetric Cones
JO  - Journal of Lie theory
PY  - 2014
SP  - 373
EP  - 396
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a3/
ID  - JLT_2014_24_2_JLT_2014_24_2_a3
ER  - 
%0 Journal Article
%A J. M�llers 
%T Heat Kernel Analysis for Bessel Operators on Symmetric Cones
%J Journal of Lie theory
%D 2014
%P 373-396
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a3/
%F JLT_2014_24_2_JLT_2014_24_2_a3
J. M�llers . Heat Kernel Analysis for Bessel Operators on Symmetric Cones. Journal of Lie theory, Tome 24 (2014) no. 2, pp. 373-396. http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a3/