Heat Kernel Analysis for Bessel Operators on Symmetric Cones
Journal of Lie theory, Tome 24 (2014) no. 2, pp. 373-396
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\C{{\Bbb C}} \def\R{{\Bbb R}} We investigate the heat equation corresponding to the Bessel operators on a symmetric cone $\Omega=G/K$. These operators form a one-parameter family of elliptic self-adjoint second order differential operators and occur in the Lie algebra action of certain unitary highest weight representations. The heat kernel is explicitly given in terms of a multivariable $I$-Bessel function on $\Omega$. Its corresponding heat kernel transform defines a continuous linear operator between $L^p$-spaces. The unitary image of the $L^2$-space under the heat kernel transform is characterized as a weighted Bergman space on the complexification $G_\C/K_\C$ of $\Omega$, the weight being expressed explicitly in terms of a multivariable $K$-Bessel function on $\Omega$. Even in the special case of the symmetric cone $\Omega=\R_+$ these results seem to be new.
Classification :
58J35, 22E45, 30H20, 33C70
Mots-clés : Heat kernel transform, Segal-Bargmann transform, symmetric cone, Bergman space, Bessel operator, Bessel function
Mots-clés : Heat kernel transform, Segal-Bargmann transform, symmetric cone, Bergman space, Bessel operator, Bessel function
@article{JLT_2014_24_2_JLT_2014_24_2_a3,
author = {J. M�llers },
title = {Heat {Kernel} {Analysis} for {Bessel} {Operators} on {Symmetric} {Cones}},
journal = {Journal of Lie theory},
pages = {373--396},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a3/}
}
J. M�llers . Heat Kernel Analysis for Bessel Operators on Symmetric Cones. Journal of Lie theory, Tome 24 (2014) no. 2, pp. 373-396. http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a3/