Finite Dimensional Nichols Algebras over Finite Cyclic Groups
Journal of Lie theory, Tome 24 (2014) no. 2, pp. 351-372
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\Z{{\Bbb Z}} All finite dimensional Nichols algebras of diagonal type of connected finite dimensional Yetter-Drinfeld modules over a finite cyclic group $\Z_n$ are found. It is proved that the Nichols algebra of a connected Yetter-Drinfeld module $V$ over $\Z_n$ with $\dim V >3$ is infinite dimensional.
Classification :
16W30, 11A07
Mots-clés : Arithmetic root system, Hopf algebra, cyclic group
Mots-clés : Arithmetic root system, Hopf algebra, cyclic group
@article{JLT_2014_24_2_JLT_2014_24_2_a2,
author = {W. Wu and S. Zhang and Y.-Z. Zhang },
title = {Finite {Dimensional} {Nichols} {Algebras} over {Finite} {Cyclic} {Groups}},
journal = {Journal of Lie theory},
pages = {351--372},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a2/}
}
TY - JOUR AU - W. Wu AU - S. Zhang AU - Y.-Z. Zhang TI - Finite Dimensional Nichols Algebras over Finite Cyclic Groups JO - Journal of Lie theory PY - 2014 SP - 351 EP - 372 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a2/ ID - JLT_2014_24_2_JLT_2014_24_2_a2 ER -
W. Wu; S. Zhang; Y.-Z. Zhang . Finite Dimensional Nichols Algebras over Finite Cyclic Groups. Journal of Lie theory, Tome 24 (2014) no. 2, pp. 351-372. http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a2/