A New Formula for the Pfaffian-Type Segal-Sugawara Vector
Journal of Lie theory, Tome 24 (2014) no. 2, pp. 529-543.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\o{{\frak o}} A combinatorial formula for the Pfaffian of the universal enveloping algebra $U(\widehat{\o}_{2n})$ of the affine Kac-Moody algebra $\widehat{\o}_{2n}$ is proved. It allows us easily to compute the image of the Segal-Sugawara vector under the Harish-Chandra homomorphism and to deduce formulas for the classical Pfaffian of the universal enveloping algebra $U(\o_{2n})$ of the even orthogonal Lie algebra.
Classification : 17B35, 17B67
Mots-clés : Pfaffian, affine orthogonal Lie algebra, Feigin-Frenkel center, Harish-Chandra homomorphism
@article{JLT_2014_24_2_JLT_2014_24_2_a10,
     author = {N. Rozhkovskaya },
     title = {A {New} {Formula} for the {Pfaffian-Type} {Segal-Sugawara} {Vector}},
     journal = {Journal of Lie theory},
     pages = {529--543},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a10/}
}
TY  - JOUR
AU  - N. Rozhkovskaya 
TI  - A New Formula for the Pfaffian-Type Segal-Sugawara Vector
JO  - Journal of Lie theory
PY  - 2014
SP  - 529
EP  - 543
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a10/
ID  - JLT_2014_24_2_JLT_2014_24_2_a10
ER  - 
%0 Journal Article
%A N. Rozhkovskaya 
%T A New Formula for the Pfaffian-Type Segal-Sugawara Vector
%J Journal of Lie theory
%D 2014
%P 529-543
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a10/
%F JLT_2014_24_2_JLT_2014_24_2_a10
N. Rozhkovskaya . A New Formula for the Pfaffian-Type Segal-Sugawara Vector. Journal of Lie theory, Tome 24 (2014) no. 2, pp. 529-543. http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a10/