A New Formula for the Pfaffian-Type Segal-Sugawara Vector
Journal of Lie theory, Tome 24 (2014) no. 2, pp. 529-543
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\o{{\frak o}} A combinatorial formula for the Pfaffian of the universal enveloping algebra $U(\widehat{\o}_{2n})$ of the affine Kac-Moody algebra $\widehat{\o}_{2n}$ is proved. It allows us easily to compute the image of the Segal-Sugawara vector under the Harish-Chandra homomorphism and to deduce formulas for the classical Pfaffian of the universal enveloping algebra $U(\o_{2n})$ of the even orthogonal Lie algebra.
Classification :
17B35, 17B67
Mots-clés : Pfaffian, affine orthogonal Lie algebra, Feigin-Frenkel center, Harish-Chandra homomorphism
Mots-clés : Pfaffian, affine orthogonal Lie algebra, Feigin-Frenkel center, Harish-Chandra homomorphism
@article{JLT_2014_24_2_JLT_2014_24_2_a10,
author = {N. Rozhkovskaya },
title = {A {New} {Formula} for the {Pfaffian-Type} {Segal-Sugawara} {Vector}},
journal = {Journal of Lie theory},
pages = {529--543},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a10/}
}
N. Rozhkovskaya . A New Formula for the Pfaffian-Type Segal-Sugawara Vector. Journal of Lie theory, Tome 24 (2014) no. 2, pp. 529-543. http://geodesic.mathdoc.fr/item/JLT_2014_24_2_JLT_2014_24_2_a10/