Equivalence of Characters in Deformation Quantization and Lie Theory
Journal of Lie theory, Tome 24 (2014) no. 1, pp. 77-96
Cet article a éte moissonné depuis la source Heldermann Verlag
Let αf be the Penney distribution associated to an element f in g*, where g is a nilpotent Lie algebra. We prove that the analytical character of αf coincides with the biquantization character of the zero degree cohomology of the Cattaneo-Felder A∞ algebra in the linear case.
Classification :
53D55, 22E35, 17B15, 16S32
Mots-clés : Deformation quantization, orbit method, invariant differential operators, nilpotent Lie algebras
Mots-clés : Deformation quantization, orbit method, invariant differential operators, nilpotent Lie algebras
@article{JLT_2014_24_1_JLT_2014_24_1_a3,
author = {P. Batakidis },
title = {Equivalence of {Characters} in {Deformation} {Quantization} and {Lie} {Theory}},
journal = {Journal of Lie theory},
pages = {77--96},
year = {2014},
volume = {24},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a3/}
}
P. Batakidis . Equivalence of Characters in Deformation Quantization and Lie Theory. Journal of Lie theory, Tome 24 (2014) no. 1, pp. 77-96. http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a3/