Totally Geodesic Subalgebras of Nilpotent Lie Algebras
Journal of Lie theory, Tome 23 (2013) no. 4, pp. 1023-1049.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} \def\h{{\frak h}} A metric Lie algebra $\g$ is a Lie algebra equipped with an inner product. A subalgebra $\h$ of a metric Lie algebra $\g$ is said to be totally geodesic if the Lie subgroup corresponding to $\h$ is a totally geodesic submanifold relative to the left-invariant Riemannian metric defined by the inner product, on the simply connected Lie group associated to $\g$. A nonzero element of $\g$ is called a geodesic if it spans a one-dimensional totally geodesic subalgebra. We give a new proof of Ka{\u\i}zer's theorem that every metric Lie algebra possesses a geodesic. For nilpotent Lie algebras, we give several results on the possible dimensions of totally geodesic subalgebras. We give an example of a codimension two totally geodesic subalgebra of the standard filiform nilpotent Lie algebra, equipped with a certain inner product. We prove that no other filiform Lie algebra possesses such a subalgebra. We show that in filiform nilpotent Lie algebras, totally geodesic subalgebras that leave invariant their orthogonal complements have dimension at most half the dimension of the algebra. We give an example of a 6-dimensional filiform nilpotent Lie algebra that has no totally geodesic subalgebra of dimension $>2$, for any choice of inner product.
Classification : 57R30, 22E25, 53C30
Mots-clés : Lie algebra, nilpotent, filiform, totally geodesic foliation
@article{JLT_2013_23_4_JLT_2013_23_4_a7,
     author = {G. Cairns and A. Hinic Galic and Y. Nikolayevsky },
     title = {Totally {Geodesic} {Subalgebras} of {Nilpotent} {Lie} {Algebras}},
     journal = {Journal of Lie theory},
     pages = {1023--1049},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a7/}
}
TY  - JOUR
AU  - G. Cairns
AU  - A. Hinic Galic
AU  - Y. Nikolayevsky 
TI  - Totally Geodesic Subalgebras of Nilpotent Lie Algebras
JO  - Journal of Lie theory
PY  - 2013
SP  - 1023
EP  - 1049
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a7/
ID  - JLT_2013_23_4_JLT_2013_23_4_a7
ER  - 
%0 Journal Article
%A G. Cairns
%A A. Hinic Galic
%A Y. Nikolayevsky 
%T Totally Geodesic Subalgebras of Nilpotent Lie Algebras
%J Journal of Lie theory
%D 2013
%P 1023-1049
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a7/
%F JLT_2013_23_4_JLT_2013_23_4_a7
G. Cairns; A. Hinic Galic; Y. Nikolayevsky . Totally Geodesic Subalgebras of Nilpotent Lie Algebras. Journal of Lie theory, Tome 23 (2013) no. 4, pp. 1023-1049. http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a7/