Lp-Boundedness of Flag Kernels on Homogeneous Groups via Symbolic Calculus
Journal of Lie theory, Tome 23 (2013) no. 4, pp. 953-977.

Voir la notice de l'article provenant de la source Heldermann Verlag

We prove that the flag kernel singular integral operators of Nagel-Ricci-Stein on a homogeneous group are bounded on Lp, 1<p<∞. The gradation associated with the kernels is the natural gradation of the underlying Lie algebra. Our main tools are the Littlewood-Paley theory and a symbolic calculus combined in the spirit of Duoandikoetxea and Rubio de Francia.
Classification : 42B20, 42B25
Mots-clés : Homogeneous groups, singular integrals, multipliers, flag kernels, Fourier transform, maximal functions, L-p-spaces, Littlewood-Paley theory
@article{JLT_2013_23_4_JLT_2013_23_4_a3,
     author = {P. Glowacki },
     title = {L\protect\textsuperscript{p}-Boundedness of {Flag} {Kernels} on {Homogeneous} {Groups} via {Symbolic} {Calculus}},
     journal = {Journal of Lie theory},
     pages = {953--977},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a3/}
}
TY  - JOUR
AU  - P. Glowacki 
TI  - Lp-Boundedness of Flag Kernels on Homogeneous Groups via Symbolic Calculus
JO  - Journal of Lie theory
PY  - 2013
SP  - 953
EP  - 977
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a3/
ID  - JLT_2013_23_4_JLT_2013_23_4_a3
ER  - 
%0 Journal Article
%A P. Glowacki 
%T Lp-Boundedness of Flag Kernels on Homogeneous Groups via Symbolic Calculus
%J Journal of Lie theory
%D 2013
%P 953-977
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a3/
%F JLT_2013_23_4_JLT_2013_23_4_a3
P. Glowacki . Lp-Boundedness of Flag Kernels on Homogeneous Groups via Symbolic Calculus. Journal of Lie theory, Tome 23 (2013) no. 4, pp. 953-977. http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a3/