Lp-Boundedness of Flag Kernels on Homogeneous Groups via Symbolic Calculus
Journal of Lie theory, Tome 23 (2013) no. 4, pp. 953-977
Cet article a éte moissonné depuis la source Heldermann Verlag
We prove that the flag kernel singular integral operators of Nagel-Ricci-Stein on a homogeneous group are bounded on Lp, 1<p<∞. The gradation associated with the kernels is the natural gradation of the underlying Lie algebra. Our main tools are the Littlewood-Paley theory and a symbolic calculus combined in the spirit of Duoandikoetxea and Rubio de Francia.
Classification :
42B20, 42B25
Mots-clés : Homogeneous groups, singular integrals, multipliers, flag kernels, Fourier transform, maximal functions, L-p-spaces, Littlewood-Paley theory
Mots-clés : Homogeneous groups, singular integrals, multipliers, flag kernels, Fourier transform, maximal functions, L-p-spaces, Littlewood-Paley theory
@article{JLT_2013_23_4_JLT_2013_23_4_a3,
author = {P. Glowacki },
title = {L\protect\textsuperscript{p}-Boundedness of {Flag} {Kernels} on {Homogeneous} {Groups} via {Symbolic} {Calculus}},
journal = {Journal of Lie theory},
pages = {953--977},
year = {2013},
volume = {23},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a3/}
}
P. Glowacki . Lp-Boundedness of Flag Kernels on Homogeneous Groups via Symbolic Calculus. Journal of Lie theory, Tome 23 (2013) no. 4, pp. 953-977. http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a3/