Intertwining Operators Between Line Bundles on Grassmannians
Journal of Lie theory, Tome 23 (2013) no. 4, pp. 1191-12
Cet article a éte moissonné depuis la source Heldermann Verlag
Let $G={\rm GL}(n,F)$ where $F$ is a local field of arbitrary characteristic, and let $\pi_{1},\pi_{2}$ be representations induced from characters of two maximal parabolic subgroups $P_{1},P_{2}$. We explicitly determine the space ${\rm Hom}_{G}\left(\pi_{1},\pi_{2}\right)$ of intertwining operators and prove that it has dimension $\leq1$ in all cases.
Classification :
22E50, 44A05, 44A12
Mots-clés : Reductive group, maximal parabolic, degenerate principal series, derivatives of representations, Radon transform, cosine transform
Mots-clés : Reductive group, maximal parabolic, degenerate principal series, derivatives of representations, Radon transform, cosine transform
@article{JLT_2013_23_4_JLT_2013_23_4_a16,
author = {D. Gourevitch and S. Sahi },
title = {Intertwining {Operators} {Between} {Line} {Bundles} on {Grassmannians}},
journal = {Journal of Lie theory},
pages = {1191--12},
year = {2013},
volume = {23},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a16/}
}
D. Gourevitch; S. Sahi . Intertwining Operators Between Line Bundles on Grassmannians. Journal of Lie theory, Tome 23 (2013) no. 4, pp. 1191-12. http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a16/