Olshanski Spherical Functions for Infinite Dimensional Motion Groups of Fixed Rank
Journal of Lie theory, Tome 23 (2013) no. 4, pp. 899-92.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\C{{\Bbb C}} \def\F{{\Bbb F}} \def\H{{\Bbb H}} \def\R{{\Bbb R}} Consider the Gelfand pairs $(G_p, K_p):=(M_{p,q} \rtimes U_p, U_p)$ associated with motion groups over the fields $\F = \R,\C,\H$ with $p\geq q$ and fixed $q$ as well as the inductive limit for $p\to\infty$, the Olshanski spherical pair $(G_\infty, K_\infty)$. We classify all Olshanski spherical functions of $(G_\infty, K_\infty)$ as functions on the cone $\Pi_q$ of positive semidefinite $q\times q$-matrices and show that they appear as (locally) uniform limits of spherical functions of $(G_p, K_p)$ as $p\to\infty$. The latter are given by Bessel functions on $\Pi_q$. Moreover, we determine all positive definite Olshanski spherical functions and discuss related positive integral representations for matrix Bessel functions.\par We also extend the results to the pairs $(M_{p,q} \rtimes (U_p\times U_q), (U_p\times U_q))$ which are related to the Cartan motion groups of non-compact Grassmannians. Here Dunkl-Bessel functions of type B (for finite $p$) and of type A (for $p\to\infty$) appear as spherical functions.
Classification : 43A90, 22E66, 33C80, 43A85
Mots-clés : Spherical functions, Olshanski spherical pairs, Bessel functions on matrix cones, Dunkl theory, positive definite functions, multivariate beta distributions
@article{JLT_2013_23_4_JLT_2013_23_4_a0,
     author = {M. R�sler and M. Voit },
     title = {Olshanski {Spherical} {Functions} for {Infinite} {Dimensional} {Motion} {Groups} of {Fixed} {Rank}},
     journal = {Journal of Lie theory},
     pages = {899--92},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a0/}
}
TY  - JOUR
AU  - M. R�sler
AU  - M. Voit 
TI  - Olshanski Spherical Functions for Infinite Dimensional Motion Groups of Fixed Rank
JO  - Journal of Lie theory
PY  - 2013
SP  - 899
EP  - 92
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a0/
ID  - JLT_2013_23_4_JLT_2013_23_4_a0
ER  - 
%0 Journal Article
%A M. R�sler
%A M. Voit 
%T Olshanski Spherical Functions for Infinite Dimensional Motion Groups of Fixed Rank
%J Journal of Lie theory
%D 2013
%P 899-92
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a0/
%F JLT_2013_23_4_JLT_2013_23_4_a0
M. R�sler; M. Voit . Olshanski Spherical Functions for Infinite Dimensional Motion Groups of Fixed Rank. Journal of Lie theory, Tome 23 (2013) no. 4, pp. 899-92. http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a0/