Left Invariant Metrics on Lie Groups Associated with G-Associative Algebras
Journal of Lie theory, Tome 23 (2013) no. 3, pp. 731-745.

Voir la notice de l'article provenant de la source Heldermann Verlag

A left invariant connection associated with a left invariant metric on a Lie group defines a Lie-admissible algebra which provides a Lie-admissible algebraic approach to the study given by Milnor. In this paper, using such an approach, we study left invariant metrics on Lie groups associated with certain subclasses of Lie-admissible Lie algebras, namely, G-associative algebras explicitly. In particular, their classifications in low dimensions are given.
Classification : 17D25, 17A30, 53C07
Mots-clés : Left invariant metric, Lie group, Lie algebra, Lie-admissible algebra, G-associative algebra
@article{JLT_2013_23_3_JLT_2013_23_3_a7,
     author = {C. Bai and Z. Chen },
     title = {Left {Invariant} {Metrics} on {Lie} {Groups} {Associated} with {G-Associative} {Algebras}},
     journal = {Journal of Lie theory},
     pages = {731--745},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a7/}
}
TY  - JOUR
AU  - C. Bai
AU  - Z. Chen 
TI  - Left Invariant Metrics on Lie Groups Associated with G-Associative Algebras
JO  - Journal of Lie theory
PY  - 2013
SP  - 731
EP  - 745
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a7/
ID  - JLT_2013_23_3_JLT_2013_23_3_a7
ER  - 
%0 Journal Article
%A C. Bai
%A Z. Chen 
%T Left Invariant Metrics on Lie Groups Associated with G-Associative Algebras
%J Journal of Lie theory
%D 2013
%P 731-745
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a7/
%F JLT_2013_23_3_JLT_2013_23_3_a7
C. Bai; Z. Chen . Left Invariant Metrics on Lie Groups Associated with G-Associative Algebras. Journal of Lie theory, Tome 23 (2013) no. 3, pp. 731-745. http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a7/