Infinite Loop Spaces Associated to Affine Kac-Moody Groups
Journal of Lie theory, Tome 23 (2013) no. 3, pp. 699-709.

Voir la notice de l'article provenant de la source Heldermann Verlag

The main purpose of this paper is to construct infinite loop spaces from affine Kac-Moody groups, It is well known that to each infinite class of classical groups over a commutative ring R, we can associate an infinite loop space G(R) by Quillen's plus construction. In this paper we generalize this fact to the cases of affine Kac-Moody groups. Roughly speaking, for each commutative ring R there are seven infinite classes of affine Kac-Moody groups over R, and to each infinite class we can associate an analogous infinite loop space.
Classification : 55P47, 20G44
Mots-clés : Infinite loop space, affine Kac-Moody group
@article{JLT_2013_23_3_JLT_2013_23_3_a5,
     author = {X. Lin },
     title = {Infinite {Loop} {Spaces} {Associated} to {Affine} {Kac-Moody} {Groups}},
     journal = {Journal of Lie theory},
     pages = {699--709},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a5/}
}
TY  - JOUR
AU  - X. Lin 
TI  - Infinite Loop Spaces Associated to Affine Kac-Moody Groups
JO  - Journal of Lie theory
PY  - 2013
SP  - 699
EP  - 709
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a5/
ID  - JLT_2013_23_3_JLT_2013_23_3_a5
ER  - 
%0 Journal Article
%A X. Lin 
%T Infinite Loop Spaces Associated to Affine Kac-Moody Groups
%J Journal of Lie theory
%D 2013
%P 699-709
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a5/
%F JLT_2013_23_3_JLT_2013_23_3_a5
X. Lin . Infinite Loop Spaces Associated to Affine Kac-Moody Groups. Journal of Lie theory, Tome 23 (2013) no. 3, pp. 699-709. http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a5/