A Remark on Pillen's Theorem for Projective Indecomposable kG(n)-Modules
Journal of Lie theory, Tome 23 (2013) no. 3, pp. 691-697
Cet article a éte moissonné depuis la source Heldermann Verlag
Let $g$ be a connected, semisimple and simply connected algebraic group defined and split over the finite field of order $p$, and let $g(n)$ be the corresponding finite chevalley group and $g_n$ the $n$-th frobenius kernel. Pillen has proved that for a $3(h-1)$-deep and $p^n$-restricted weight $\lambda$, the $G$-module $Q_n(\lambda)$ which is extended from the $G_n$-PIM for $\lambda$ has the same socle series as the corresponding $kG(n)$-PIM $U_n(\lambda)$. Here we remark that this fact already holds for $\lambda$ being $2(h-1)$-deep.
Classification :
20C33, 20G05, 20G15
Mots-clés : Loewy series, projective indecomposable modules, 2(h-1)-deep weights
Mots-clés : Loewy series, projective indecomposable modules, 2(h-1)-deep weights
@article{JLT_2013_23_3_JLT_2013_23_3_a4,
author = {Y. Yoshii },
title = {A {Remark} on {Pillen's} {Theorem} for {Projective} {Indecomposable} {kG(n)-Modules}},
journal = {Journal of Lie theory},
pages = {691--697},
year = {2013},
volume = {23},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a4/}
}
Y. Yoshii . A Remark on Pillen's Theorem for Projective Indecomposable kG(n)-Modules. Journal of Lie theory, Tome 23 (2013) no. 3, pp. 691-697. http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a4/