Upper Bound for the Heat Kernel on Higher-Rank NA Groups
Journal of Lie theory, Tome 23 (2013) no. 3, pp. 655-668
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\R{{\Bbb R}} Let $S$ be a semi-direct product $S=N\rtimes A$ where $N$ is a connected and simply connected, non-abelian, nilpotent meta-abelian Lie group and $A$ is isomorphic with $\R^k,$ $k>1$. We consider a class of second order left-invariant differential operators ${\cal L}_\alpha$, $\alpha\in\R^k$, on $S$. We obtain an upper bound for the heat kernel for ${\cal L}_\alpha$.
Classification :
43A85, 31B05, 22E25, 22E30, 60J25, 60J60
Mots-clés : Heat kernel, left invariant differential operators, meta-abelian nilpotent Lie groups, solvable Lie groups, homogeneous groups, higher rank $NA$ groups, Brownian motion, exponential functionals of Brownian motion
Mots-clés : Heat kernel, left invariant differential operators, meta-abelian nilpotent Lie groups, solvable Lie groups, homogeneous groups, higher rank $NA$ groups, Brownian motion, exponential functionals of Brownian motion
@article{JLT_2013_23_3_JLT_2013_23_3_a2,
author = {R. Penney and R. Urban },
title = {Upper {Bound} for the {Heat} {Kernel} on {Higher-Rank} {NA} {Groups}},
journal = {Journal of Lie theory},
pages = {655--668},
year = {2013},
volume = {23},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a2/}
}
R. Penney; R. Urban . Upper Bound for the Heat Kernel on Higher-Rank NA Groups. Journal of Lie theory, Tome 23 (2013) no. 3, pp. 655-668. http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a2/