Upper Bound for the Heat Kernel on Higher-Rank NA Groups
Journal of Lie theory, Tome 23 (2013) no. 3, pp. 655-668.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\R{{\Bbb R}} Let $S$ be a semi-direct product $S=N\rtimes A$ where $N$ is a connected and simply connected, non-abelian, nilpotent meta-abelian Lie group and $A$ is isomorphic with $\R^k,$ $k>1$. We consider a class of second order left-invariant differential operators ${\cal L}_\alpha$, $\alpha\in\R^k$, on $S$. We obtain an upper bound for the heat kernel for ${\cal L}_\alpha$.
Classification : 43A85, 31B05, 22E25, 22E30, 60J25, 60J60
Mots-clés : Heat kernel, left invariant differential operators, meta-abelian nilpotent Lie groups, solvable Lie groups, homogeneous groups, higher rank $NA$ groups, Brownian motion, exponential functionals of Brownian motion
@article{JLT_2013_23_3_JLT_2013_23_3_a2,
     author = {R. Penney and R. Urban },
     title = {Upper {Bound} for the {Heat} {Kernel} on {Higher-Rank} {NA} {Groups}},
     journal = {Journal of Lie theory},
     pages = {655--668},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a2/}
}
TY  - JOUR
AU  - R. Penney
AU  - R. Urban 
TI  - Upper Bound for the Heat Kernel on Higher-Rank NA Groups
JO  - Journal of Lie theory
PY  - 2013
SP  - 655
EP  - 668
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a2/
ID  - JLT_2013_23_3_JLT_2013_23_3_a2
ER  - 
%0 Journal Article
%A R. Penney
%A R. Urban 
%T Upper Bound for the Heat Kernel on Higher-Rank NA Groups
%J Journal of Lie theory
%D 2013
%P 655-668
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a2/
%F JLT_2013_23_3_JLT_2013_23_3_a2
R. Penney; R. Urban . Upper Bound for the Heat Kernel on Higher-Rank NA Groups. Journal of Lie theory, Tome 23 (2013) no. 3, pp. 655-668. http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a2/