Clifford-Wolf Homogeneous Randers Spaces
Journal of Lie theory, Tome 23 (2013) no. 3, pp. 837-845.

Voir la notice de l'article provenant de la source Heldermann Verlag

A Clifford--Wolf translation of a connected Finsler space is an isometry which moves all points the same distance. A Finsler space $(M, F)$ is called Clifford-Wolf homogeneous if for any two points $x_1, x_2\in M$ there is a Clifford-Wolf translation $\rho$ such that $\rho(x_1)=x_2$. In this paper, we give a complete classification of connected simply connected Clifford-Wolf homogeneous Randers spaces.
Classification : 22E46, 53C30
Mots-clés : Finsler spaces, Clifford-Wolf translations, Clifford-Wolf homogeneous Randers spaces, Killing vector fields
@article{JLT_2013_23_3_JLT_2013_23_3_a13,
     author = {M. Xu and S. Deng },
     title = {Clifford-Wolf {Homogeneous} {Randers} {Spaces}},
     journal = {Journal of Lie theory},
     pages = {837--845},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a13/}
}
TY  - JOUR
AU  - M. Xu
AU  - S. Deng 
TI  - Clifford-Wolf Homogeneous Randers Spaces
JO  - Journal of Lie theory
PY  - 2013
SP  - 837
EP  - 845
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a13/
ID  - JLT_2013_23_3_JLT_2013_23_3_a13
ER  - 
%0 Journal Article
%A M. Xu
%A S. Deng 
%T Clifford-Wolf Homogeneous Randers Spaces
%J Journal of Lie theory
%D 2013
%P 837-845
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a13/
%F JLT_2013_23_3_JLT_2013_23_3_a13
M. Xu; S. Deng . Clifford-Wolf Homogeneous Randers Spaces. Journal of Lie theory, Tome 23 (2013) no. 3, pp. 837-845. http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a13/