Clifford-Wolf Homogeneous Randers Spaces
Journal of Lie theory, Tome 23 (2013) no. 3, pp. 837-845
Voir la notice de l'article provenant de la source Heldermann Verlag
A Clifford--Wolf translation of a connected Finsler space is an isometry which moves all points the same distance. A Finsler space $(M, F)$ is called Clifford-Wolf homogeneous if for any two points $x_1, x_2\in M$ there is a Clifford-Wolf translation $\rho$ such that $\rho(x_1)=x_2$. In this paper, we give a complete classification of connected simply connected Clifford-Wolf homogeneous Randers spaces.
Classification :
22E46, 53C30
Mots-clés : Finsler spaces, Clifford-Wolf translations, Clifford-Wolf homogeneous Randers spaces, Killing vector fields
Mots-clés : Finsler spaces, Clifford-Wolf translations, Clifford-Wolf homogeneous Randers spaces, Killing vector fields
@article{JLT_2013_23_3_JLT_2013_23_3_a13,
author = {M. Xu and S. Deng },
title = {Clifford-Wolf {Homogeneous} {Randers} {Spaces}},
journal = {Journal of Lie theory},
pages = {837--845},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2013},
url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a13/}
}
M. Xu; S. Deng . Clifford-Wolf Homogeneous Randers Spaces. Journal of Lie theory, Tome 23 (2013) no. 3, pp. 837-845. http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a13/