A Plancherel Formula for Representative Functions on Semisimple Lie Groups
Journal of Lie theory, Tome 23 (2013) no. 2, pp. 493-505
Voir la notice de l'article provenant de la source Heldermann Verlag
A Plancherel formula is given for representative functions on a connected semisimple Lie group G. Since the matrix coefficients for the irreducible finite-dimensional representations are not necessarily square-integrable, an alternative to the Schur Orthogonality Relations is given using invariant differential operators. The corresponding operator analysis is summarized.
Classification :
22E46
Mots-clés : Semisimple Lie group, Schur orthogonality relations, matrix coefficient, representative function, Plancherel formula
Mots-clés : Semisimple Lie group, Schur orthogonality relations, matrix coefficient, representative function, Plancherel formula
@article{JLT_2013_23_2_JLT_2013_23_2_a7,
author = {R. W. Donley and Jr. },
title = {A {Plancherel} {Formula} for {Representative} {Functions} on {Semisimple} {Lie} {Groups}},
journal = {Journal of Lie theory},
pages = {493--505},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2013},
url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_2_JLT_2013_23_2_a7/}
}
TY - JOUR AU - R. W. Donley AU - Jr. TI - A Plancherel Formula for Representative Functions on Semisimple Lie Groups JO - Journal of Lie theory PY - 2013 SP - 493 EP - 505 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2013_23_2_JLT_2013_23_2_a7/ ID - JLT_2013_23_2_JLT_2013_23_2_a7 ER -
R. W. Donley; Jr. . A Plancherel Formula for Representative Functions on Semisimple Lie Groups. Journal of Lie theory, Tome 23 (2013) no. 2, pp. 493-505. http://geodesic.mathdoc.fr/item/JLT_2013_23_2_JLT_2013_23_2_a7/