Orbital Reducibility and a Generalization of Lambda Symmetries
Journal of Lie theory, Tome 23 (2013) no. 2, pp. 357-381
Voir la notice de l'article provenant de la source Heldermann Verlag
We review the notion of reducibility and we introduce and discuss the notion of orbital reducibility for autonomous ordinary differential equations of first order. The relation between (orbital) reducibility and (orbital) symmetry is investigated and employed to construct (orbitally) reducible systems. By standard identifications, the notions extend to non-autonomous ODEs of first and higher order. Moreover we thus obtain a generalization of the lambda symmetries of Muriel and Romero. Several examples are given.
Classification :
34A05, 34C14, 34A25, 34A26
Mots-clés : Symmetry, reduction, vector field
Mots-clés : Symmetry, reduction, vector field
@article{JLT_2013_23_2_JLT_2013_23_2_a1,
author = {G. Cicogna and G. Gaeta and S. Walcher },
title = {Orbital {Reducibility} and a {Generalization} of {Lambda} {Symmetries}},
journal = {Journal of Lie theory},
pages = {357--381},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2013},
url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_2_JLT_2013_23_2_a1/}
}
TY - JOUR AU - G. Cicogna AU - G. Gaeta AU - S. Walcher TI - Orbital Reducibility and a Generalization of Lambda Symmetries JO - Journal of Lie theory PY - 2013 SP - 357 EP - 381 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2013_23_2_JLT_2013_23_2_a1/ ID - JLT_2013_23_2_JLT_2013_23_2_a1 ER -
G. Cicogna; G. Gaeta; S. Walcher . Orbital Reducibility and a Generalization of Lambda Symmetries. Journal of Lie theory, Tome 23 (2013) no. 2, pp. 357-381. http://geodesic.mathdoc.fr/item/JLT_2013_23_2_JLT_2013_23_2_a1/