The Problem of Zero Divisors in Convolution Algebras of Supersolvable Lie Groups
Journal of Lie theory, Tome 23 (2013) no. 1, pp. 119-125
Cet article a éte moissonné depuis la source Heldermann Verlag
We prove a variant of the Titchmarsh convolution theorem for simply connected supersolvable Lie groups, namely we show that the convolution algebras of compactly supported continuous functions and compactly supported finite measures on such groups do not contain zero divisors. This can be also viewed as a topological version of the zero divisor conjecture of Kaplansky.
Classification :
22A25, 43A10
Mots-clés : Convolution, convolution algebra, zero divisor, compactly supported measure
Mots-clés : Convolution, convolution algebra, zero divisor, compactly supported measure
@article{JLT_2013_23_1_JLT_2013_23_1_a5,
author = {L. Garncarek},
title = {The {Problem} of {Zero} {Divisors} in {Convolution} {Algebras} of {Supersolvable} {Lie} {Groups}},
journal = {Journal of Lie theory},
pages = {119--125},
year = {2013},
volume = {23},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_1_JLT_2013_23_1_a5/}
}
L. Garncarek. The Problem of Zero Divisors in Convolution Algebras of Supersolvable Lie Groups. Journal of Lie theory, Tome 23 (2013) no. 1, pp. 119-125. http://geodesic.mathdoc.fr/item/JLT_2013_23_1_JLT_2013_23_1_a5/