Skew-Symmetric Prolongations of Lie Algebras and Applications
Journal of Lie theory, Tome 23 (2013) no. 1, pp. 1-33.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} \def\o{{\frak o}} \def\s{{\frak s}} We study the skew-symmetric prolongation of a Lie subalgebra $\g \subseteq \s\o(n)$, in other words the intersection $\Lambda^3 \cap (\Lambda^1 \otimes \g)$. We compute this space in full generality. Applications include uniqueness results for connections with skew-symmetric torsion and also the proof of the Euclidean version of a conjecture by Figueroa-O'Farrill and Papadopoulos concerning a class of Pl\"ucker-type embeddings. We also derive a classification of the metric k-Lie algebras (or Filipov algebras), in positive signature and finite dimension. Next we study specific properties of invariant $4$-forms of a given metric representation and apply these considerations to classify the holonomy representation of metric connections with vectorial torsion, that is with torsion contained in $\Lambda^1 \subseteq \Lambda^1 \otimes \Lambda^2$.
Classification : 53C05, 53C29
Mots-clés : Skew-symmetric prolongation, connection with skew symmetric, vectorial torsion
@article{JLT_2013_23_1_JLT_2013_23_1_a0,
     author = {P.-A. Nagy },
     title = {Skew-Symmetric {Prolongations} of {Lie} {Algebras} and {Applications}},
     journal = {Journal of Lie theory},
     pages = {1--33},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_1_JLT_2013_23_1_a0/}
}
TY  - JOUR
AU  - P.-A. Nagy 
TI  - Skew-Symmetric Prolongations of Lie Algebras and Applications
JO  - Journal of Lie theory
PY  - 2013
SP  - 1
EP  - 33
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2013_23_1_JLT_2013_23_1_a0/
ID  - JLT_2013_23_1_JLT_2013_23_1_a0
ER  - 
%0 Journal Article
%A P.-A. Nagy 
%T Skew-Symmetric Prolongations of Lie Algebras and Applications
%J Journal of Lie theory
%D 2013
%P 1-33
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2013_23_1_JLT_2013_23_1_a0/
%F JLT_2013_23_1_JLT_2013_23_1_a0
P.-A. Nagy . Skew-Symmetric Prolongations of Lie Algebras and Applications. Journal of Lie theory, Tome 23 (2013) no. 1, pp. 1-33. http://geodesic.mathdoc.fr/item/JLT_2013_23_1_JLT_2013_23_1_a0/