Quasi-triangular Hom-Lie Bialgebras
Journal of Lie theory, Tome 22 (2012) no. 4, pp. 1075-1089
Voir la notice de l'article provenant de la source Heldermann Verlag
Recently certain twisted Lie algebras, so-called Hom-Lie algebras, and their duals have been considered in the literature. In this paper we investigate boundary and quasi-triangular Hom-Lie bialgebras further. In particular, we characterize the quasi-triangularity of boundary Hom-Lie bialgebras in terms of both a certain Hom-Lie algebra morphism and a certain Hom-Lie coalgebra morphism. We also give a necessary and sufficient condition for a given Hom-Lie algebra and a given 2-tensor to admit a coboundary Hom-Lie bialgebra structure. Finally, we generalize the Drinfeld double of a Lie bialgebra to Hom-Lie bialgebras and discuss the dual codouble.
Classification :
16W30, 17B99, 17B37
Mots-clés : Hom-Lie algebra, Hom-Lie bialgebra, quasi-triangular Hom-Lie bialgebra, (co)double Hom-Lie bialgebra
Mots-clés : Hom-Lie algebra, Hom-Lie bialgebra, quasi-triangular Hom-Lie bialgebra, (co)double Hom-Lie bialgebra
@article{JLT_2012_22_4_JLT_2012_22_4_a7,
author = {Y. Chen and Z. Wang and L. Zhang },
title = {Quasi-triangular {Hom-Lie} {Bialgebras}},
journal = {Journal of Lie theory},
pages = {1075--1089},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2012},
url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a7/}
}
Y. Chen; Z. Wang; L. Zhang . Quasi-triangular Hom-Lie Bialgebras. Journal of Lie theory, Tome 22 (2012) no. 4, pp. 1075-1089. http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a7/