Howe Duality for the Metaplectic Group Acting on Symplectic Spinor Valued Forms
Journal of Lie theory, Tome 22 (2012) no. 4, pp. 1049-1063
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\g{{\frak g}} \def\o{{\frak o}} \def\p{{\frak p}} \def\s{{\frak s}} \def\C{{\Bbb C}} \def\SS{{\Bbb S}} \def\V{{\Bbb V}} \def\W{{\Bbb W}} Let $\SS$ denote the oscillatory module over the complex symplectic Lie algebra $\g= \s\p(\V^\C,\omega)$. Consider the $\g$-module $\W=\bigwedge^{\bullet}(\V^*)^\C\otimes\SS$ of forms with values in the oscillatory module. We prove that the associative commutant algebra $\hbox{\rm End}_\g(\W)$ is generated by the image of a certain representation of the ortho-symplectic Lie super algebra $\o\s\p(1|2)$ and two distinguished projection operators. The space $\W$ is then decomposed with respect to the joint action of $\g$ and $\o\s\p(1|2)$. This establishes a Howe type duality for $\s\p(\V^\C,\omega)$ acting on $\W$.
Classification :
17B10, 17B45, 22E46, 81R05
Mots-clés : Howe duality, symplectic spinors, Segal-Shale-Weil representation, Kostant spinor
Mots-clés : Howe duality, symplectic spinors, Segal-Shale-Weil representation, Kostant spinor
@article{JLT_2012_22_4_JLT_2012_22_4_a5,
author = {S. Kr\'ysl},
title = {Howe {Duality} for the {Metaplectic} {Group} {Acting} on {Symplectic} {Spinor} {Valued} {Forms}},
journal = {Journal of Lie theory},
pages = {1049--1063},
year = {2012},
volume = {22},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a5/}
}
S. Krýsl. Howe Duality for the Metaplectic Group Acting on Symplectic Spinor Valued Forms. Journal of Lie theory, Tome 22 (2012) no. 4, pp. 1049-1063. http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a5/