Maximal Subgroups of Compact Lie Groups
Journal of Lie theory, Tome 22 (2012) no. 4, pp. 949-1024.

Voir la notice de l'article provenant de la source Heldermann Verlag

This report aims at giving a general overview on the classification of the maximal subgroups of compact Lie groups (not necessarily connected). In the first part, it is shown that these fall naturally into three types: (1) those of trivial type, which are simply defined as inverse images of maximal subgroups of the corresponding component group under the canonical projection and whose classification constitutes a problem in finite group theory, (2) those of normal type, whose connected one-component is a normal subgroup, and (3) those of normalizer type, which are the normalizers of their own connected one-component.
Classification : 22E15
Mots-clés : Lie groups, Lie algebras, Compact groups, Maximal subgroups
@article{JLT_2012_22_4_JLT_2012_22_4_a2,
     author = {F. Antoneli and M. Forger and P. Gaviria },
     title = {Maximal {Subgroups} of {Compact} {Lie} {Groups}},
     journal = {Journal of Lie theory},
     pages = {949--1024},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a2/}
}
TY  - JOUR
AU  - F. Antoneli
AU  - M. Forger
AU  - P. Gaviria 
TI  - Maximal Subgroups of Compact Lie Groups
JO  - Journal of Lie theory
PY  - 2012
SP  - 949
EP  - 1024
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a2/
ID  - JLT_2012_22_4_JLT_2012_22_4_a2
ER  - 
%0 Journal Article
%A F. Antoneli
%A M. Forger
%A P. Gaviria 
%T Maximal Subgroups of Compact Lie Groups
%J Journal of Lie theory
%D 2012
%P 949-1024
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a2/
%F JLT_2012_22_4_JLT_2012_22_4_a2
F. Antoneli; M. Forger; P. Gaviria . Maximal Subgroups of Compact Lie Groups. Journal of Lie theory, Tome 22 (2012) no. 4, pp. 949-1024. http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a2/