Maximal Subgroups of Compact Lie Groups
Journal of Lie theory, Tome 22 (2012) no. 4, pp. 949-1024
Voir la notice de l'article provenant de la source Heldermann Verlag
This report aims at giving a general overview on the classification of the maximal subgroups of compact Lie groups (not necessarily connected). In the first part, it is shown that these fall naturally into three types: (1) those of trivial type, which are simply defined as inverse images of maximal subgroups of the corresponding component group under the canonical projection and whose classification constitutes a problem in finite group theory, (2) those of normal type, whose connected one-component is a normal subgroup, and (3) those of normalizer type, which are the normalizers of their own connected one-component.
Classification :
22E15
Mots-clés : Lie groups, Lie algebras, Compact groups, Maximal subgroups
Mots-clés : Lie groups, Lie algebras, Compact groups, Maximal subgroups
@article{JLT_2012_22_4_JLT_2012_22_4_a2,
author = {F. Antoneli and M. Forger and P. Gaviria },
title = {Maximal {Subgroups} of {Compact} {Lie} {Groups}},
journal = {Journal of Lie theory},
pages = {949--1024},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2012},
url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a2/}
}
F. Antoneli; M. Forger; P. Gaviria . Maximal Subgroups of Compact Lie Groups. Journal of Lie theory, Tome 22 (2012) no. 4, pp. 949-1024. http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a2/