Fourier Transforms of Nilpotent Coadjoint Orbits for GL(n,R)
Journal of Lie theory, Tome 22 (2012) no. 4, pp. 1125-1148.

Voir la notice de l'article provenant de la source Heldermann Verlag

The main result of this paper is an explicit formula for the Fourier transform of the canonical measure on a nilpotent coadjoint orbit for GL(n,R). This paper also includes some results on limit formulas for reductive Lie groups including new proofs of classical limit formulas of Rao and Harish-Chandra.
Classification : 22E46, 43A65, 22E45
Mots-clés : Nilpotent Orbit, Fourier Transform, Reductive Lie Group, Limit Formula
@article{JLT_2012_22_4_JLT_2012_22_4_a10,
     author = {B. Harris },
     title = {Fourier {Transforms} of {Nilpotent} {Coadjoint} {Orbits} for {GL(n,R)}},
     journal = {Journal of Lie theory},
     pages = {1125--1148},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a10/}
}
TY  - JOUR
AU  - B. Harris 
TI  - Fourier Transforms of Nilpotent Coadjoint Orbits for GL(n,R)
JO  - Journal of Lie theory
PY  - 2012
SP  - 1125
EP  - 1148
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a10/
ID  - JLT_2012_22_4_JLT_2012_22_4_a10
ER  - 
%0 Journal Article
%A B. Harris 
%T Fourier Transforms of Nilpotent Coadjoint Orbits for GL(n,R)
%J Journal of Lie theory
%D 2012
%P 1125-1148
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a10/
%F JLT_2012_22_4_JLT_2012_22_4_a10
B. Harris . Fourier Transforms of Nilpotent Coadjoint Orbits for GL(n,R). Journal of Lie theory, Tome 22 (2012) no. 4, pp. 1125-1148. http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a10/