Fourier Transforms of Nilpotent Coadjoint Orbits for GL(n,R)
Journal of Lie theory, Tome 22 (2012) no. 4, pp. 1125-1148

Voir la notice de l'article provenant de la source Heldermann Verlag

The main result of this paper is an explicit formula for the Fourier transform of the canonical measure on a nilpotent coadjoint orbit for GL(n,R). This paper also includes some results on limit formulas for reductive Lie groups including new proofs of classical limit formulas of Rao and Harish-Chandra.
Classification : 22E46, 43A65, 22E45
Mots-clés : Nilpotent Orbit, Fourier Transform, Reductive Lie Group, Limit Formula
@article{JLT_2012_22_4_JLT_2012_22_4_a10,
     author = {B. Harris },
     title = {Fourier {Transforms} of {Nilpotent} {Coadjoint} {Orbits} for {GL(n,R)}},
     journal = {Journal of Lie theory},
     pages = {1125--1148},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a10/}
}
TY  - JOUR
AU  - B. Harris 
TI  - Fourier Transforms of Nilpotent Coadjoint Orbits for GL(n,R)
JO  - Journal of Lie theory
PY  - 2012
SP  - 1125
EP  - 1148
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a10/
ID  - JLT_2012_22_4_JLT_2012_22_4_a10
ER  - 
%0 Journal Article
%A B. Harris 
%T Fourier Transforms of Nilpotent Coadjoint Orbits for GL(n,R)
%J Journal of Lie theory
%D 2012
%P 1125-1148
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a10/
%F JLT_2012_22_4_JLT_2012_22_4_a10
B. Harris . Fourier Transforms of Nilpotent Coadjoint Orbits for GL(n,R). Journal of Lie theory, Tome 22 (2012) no. 4, pp. 1125-1148. http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a10/