Semigroup Actions on Adjoint Orbits
Journal of Lie theory, Tome 22 (2012) no. 4, pp. 931-948.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $G$ be a connected semi-simple Lie group with finite center and $S\subset G$ a subsemigroup with ${\rm int}\, S\neq \emptyset$. In this article we study the control sets for the actions of $S$ on the adjoint orbits ${\rm Ad}(G)H$, where $H$ is a regular element in the Lie algebra of $G$. We show here that these sets can be described as sets of fixed points for regular elements in the interior of $S$. Moreover, we shall describe the domains of attraction of this control sets and show that these sets are not comparable with respect to the natural order on control sets.
Classification : 22F30
Mots-clés : Semigroup, adjoint orbits, regular elements
@article{JLT_2012_22_4_JLT_2012_22_4_a1,
     author = {O. G. do Rocio and L. A. B. San Martin and M. A. Verdi },
     title = {Semigroup {Actions} on {Adjoint} {Orbits}},
     journal = {Journal of Lie theory},
     pages = {931--948},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a1/}
}
TY  - JOUR
AU  - O. G. do Rocio
AU  - L. A. B. San Martin
AU  - M. A. Verdi 
TI  - Semigroup Actions on Adjoint Orbits
JO  - Journal of Lie theory
PY  - 2012
SP  - 931
EP  - 948
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a1/
ID  - JLT_2012_22_4_JLT_2012_22_4_a1
ER  - 
%0 Journal Article
%A O. G. do Rocio
%A L. A. B. San Martin
%A M. A. Verdi 
%T Semigroup Actions on Adjoint Orbits
%J Journal of Lie theory
%D 2012
%P 931-948
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a1/
%F JLT_2012_22_4_JLT_2012_22_4_a1
O. G. do Rocio; L. A. B. San Martin; M. A. Verdi . Semigroup Actions on Adjoint Orbits. Journal of Lie theory, Tome 22 (2012) no. 4, pp. 931-948. http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a1/