Semigroup Actions on Adjoint Orbits
Journal of Lie theory, Tome 22 (2012) no. 4, pp. 931-948
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $G$ be a connected semi-simple Lie group with finite center and $S\subset G$ a subsemigroup with ${\rm int}\, S\neq \emptyset$. In this article we study the control sets for the actions of $S$ on the adjoint orbits ${\rm Ad}(G)H$, where $H$ is a regular element in the Lie algebra of $G$. We show here that these sets can be described as sets of fixed points for regular elements in the interior of $S$. Moreover, we shall describe the domains of attraction of this control sets and show that these sets are not comparable with respect to the natural order on control sets.
Classification :
22F30
Mots-clés : Semigroup, adjoint orbits, regular elements
Mots-clés : Semigroup, adjoint orbits, regular elements
@article{JLT_2012_22_4_JLT_2012_22_4_a1,
author = {O. G. do Rocio and L. A. B. San Martin and M. A. Verdi },
title = {Semigroup {Actions} on {Adjoint} {Orbits}},
journal = {Journal of Lie theory},
pages = {931--948},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2012},
url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a1/}
}
TY - JOUR AU - O. G. do Rocio AU - L. A. B. San Martin AU - M. A. Verdi TI - Semigroup Actions on Adjoint Orbits JO - Journal of Lie theory PY - 2012 SP - 931 EP - 948 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a1/ ID - JLT_2012_22_4_JLT_2012_22_4_a1 ER -
O. G. do Rocio; L. A. B. San Martin; M. A. Verdi . Semigroup Actions on Adjoint Orbits. Journal of Lie theory, Tome 22 (2012) no. 4, pp. 931-948. http://geodesic.mathdoc.fr/item/JLT_2012_22_4_JLT_2012_22_4_a1/