Picard Groups of Siegel Modular 3-Folds and θ-Liftings
Journal of Lie theory, Tome 22 (2012) no. 3, pp. 769-801
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\R{{\Bbb R}} We show that the Humbert surfaces rationally generate the Picard groups of Siegel modular threefolds. This involves three ingredients: (1) R. Weissauer's determination of these Picard groups in terms of theta lifting from cusp forms of weight $5/2$ on $\tilde{\rm SL}_2(\R)$ to automorphic forms on ${\rm Sp}_4(\R)$. (2) The theory of special cycles due to Kudla/Millson and Tong/Wang relating cohomology defined by automorphic forms to that defined by certain geometric cycles. (3) Results of R. Howe about the structure of the oscillator representation in this situation.
Classification :
14G35, 11F46, 11F27, 14C22, 11F23
Mots-clés : Siegel modular threefold, Picard group, theta lifting
Mots-clés : Siegel modular threefold, Picard group, theta lifting
@article{JLT_2012_22_3_JLT_2012_22_3_a7,
author = {H. He and J. W. Hoffman },
title = {Picard {Groups} of {Siegel} {Modular} {3-Folds} and {\ensuremath{\theta}-Liftings}},
journal = {Journal of Lie theory},
pages = {769--801},
publisher = {mathdoc},
volume = {22},
number = {3},
year = {2012},
url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_3_JLT_2012_22_3_a7/}
}
H. He; J. W. Hoffman . Picard Groups of Siegel Modular 3-Folds and θ-Liftings. Journal of Lie theory, Tome 22 (2012) no. 3, pp. 769-801. http://geodesic.mathdoc.fr/item/JLT_2012_22_3_JLT_2012_22_3_a7/