Abelian Ideals of Maximal Dimension for Solvable Lie Algebras
Journal of Lie theory, Tome 22 (2012) no. 3, pp. 741-756
Cet article a éte moissonné depuis la source Heldermann Verlag
We compare the maximal dimension of abelian subalgebras and the maximal dimension of abelian ideals for finite-dimensional Lie algebras. We show that these dimensions coincide for solvable Lie algebras over an algebraically closed field of characteristic zero. We compute this invariant for all complex nilpotent Lie algebras of dimension n ≤ 7. Furthermore we study the case where there exists an abelian subalgebra of codimension 2. Here we explicitly construct an abelian ideal of codimension 2 in case of nilpotent Lie algebras.
Classification :
17B30, 17D25
Mots-clés : Abelian ideals, abelian subalgebras, degenerations
Mots-clés : Abelian ideals, abelian subalgebras, degenerations
@article{JLT_2012_22_3_JLT_2012_22_3_a5,
author = {D. Burde and M. Ceballos },
title = {Abelian {Ideals} of {Maximal} {Dimension} for {Solvable} {Lie} {Algebras}},
journal = {Journal of Lie theory},
pages = {741--756},
year = {2012},
volume = {22},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_3_JLT_2012_22_3_a5/}
}
D. Burde; M. Ceballos . Abelian Ideals of Maximal Dimension for Solvable Lie Algebras. Journal of Lie theory, Tome 22 (2012) no. 3, pp. 741-756. http://geodesic.mathdoc.fr/item/JLT_2012_22_3_JLT_2012_22_3_a5/