Solvable Lie Algebras with Nilradicals of Orthogonal Types
Journal of Lie theory, Tome 22 (2012) no. 3, pp. 683-699.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\b{{\frak b}} \def\n{{\frak n}} \def\s{{\frak s}} Let $n\geq 4$ be a positive integer, $\n$ a maximal nilpotent subalgebra of the orthogonal algebra o$(2n,F)$ over a field $F$ of characteristic not $2$, $\s$ a solvable Lie algebra containing $\n$ as its nilradical. This article shows that the dimension of $\s$ is at most $\dim(\n)+n$, and $\s$ is isomorphic to the standard Borel subalgebra $\b$ of o$(2n,F)$ if and only if $\dim(\s)=\dim(\n)+n$.
Classification : 17B05, 17B20, 17B30, 17B40
Mots-clés : Solvable Lie algebras, derivations, nilradicals
@article{JLT_2012_22_3_JLT_2012_22_3_a2,
     author = {D. Wang and H. Bian and B. Chen },
     title = {Solvable {Lie} {Algebras} with {Nilradicals} of {Orthogonal} {Types}},
     journal = {Journal of Lie theory},
     pages = {683--699},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_3_JLT_2012_22_3_a2/}
}
TY  - JOUR
AU  - D. Wang
AU  - H. Bian
AU  - B. Chen 
TI  - Solvable Lie Algebras with Nilradicals of Orthogonal Types
JO  - Journal of Lie theory
PY  - 2012
SP  - 683
EP  - 699
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2012_22_3_JLT_2012_22_3_a2/
ID  - JLT_2012_22_3_JLT_2012_22_3_a2
ER  - 
%0 Journal Article
%A D. Wang
%A H. Bian
%A B. Chen 
%T Solvable Lie Algebras with Nilradicals of Orthogonal Types
%J Journal of Lie theory
%D 2012
%P 683-699
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2012_22_3_JLT_2012_22_3_a2/
%F JLT_2012_22_3_JLT_2012_22_3_a2
D. Wang; H. Bian; B. Chen . Solvable Lie Algebras with Nilradicals of Orthogonal Types. Journal of Lie theory, Tome 22 (2012) no. 3, pp. 683-699. http://geodesic.mathdoc.fr/item/JLT_2012_22_3_JLT_2012_22_3_a2/