Solvable Lie Algebras with Nilradicals of Orthogonal Types
Journal of Lie theory, Tome 22 (2012) no. 3, pp. 683-699
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\b{{\frak b}} \def\n{{\frak n}} \def\s{{\frak s}} Let $n\geq 4$ be a positive integer, $\n$ a maximal nilpotent subalgebra of the orthogonal algebra o$(2n,F)$ over a field $F$ of characteristic not $2$, $\s$ a solvable Lie algebra containing $\n$ as its nilradical. This article shows that the dimension of $\s$ is at most $\dim(\n)+n$, and $\s$ is isomorphic to the standard Borel subalgebra $\b$ of o$(2n,F)$ if and only if $\dim(\s)=\dim(\n)+n$.
Classification :
17B05, 17B20, 17B30, 17B40
Mots-clés : Solvable Lie algebras, derivations, nilradicals
Mots-clés : Solvable Lie algebras, derivations, nilradicals
@article{JLT_2012_22_3_JLT_2012_22_3_a2,
author = {D. Wang and H. Bian and B. Chen},
title = {Solvable {Lie} {Algebras} with {Nilradicals} of {Orthogonal} {Types}},
journal = {Journal of Lie theory},
pages = {683--699},
year = {2012},
volume = {22},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_3_JLT_2012_22_3_a2/}
}
D. Wang; H. Bian; B. Chen. Solvable Lie Algebras with Nilradicals of Orthogonal Types. Journal of Lie theory, Tome 22 (2012) no. 3, pp. 683-699. http://geodesic.mathdoc.fr/item/JLT_2012_22_3_JLT_2012_22_3_a2/