Integrability of Weight Modules of Degree 1
Journal of Lie theory, Tome 22 (2012) no. 2, pp. 523-539
Cet article a éte moissonné depuis la source Heldermann Verlag
The aim of this article is to find all weight modules of degree 1 of a simple complex Lie algebra that integrate to a continuous representation of a simply-connected real Lie group on some Hilbert space.
Classification :
22E46, 22E45, 22E47, 17B10
Mots-clés : Weight modules, representations of Lie groups, Gelfand-Kirillov dimension
Mots-clés : Weight modules, representations of Lie groups, Gelfand-Kirillov dimension
@article{JLT_2012_22_2_JLT_2012_22_2_a9,
author = {G. Tomasini },
title = {Integrability of {Weight} {Modules} of {Degree} 1},
journal = {Journal of Lie theory},
pages = {523--539},
year = {2012},
volume = {22},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a9/}
}
G. Tomasini . Integrability of Weight Modules of Degree 1. Journal of Lie theory, Tome 22 (2012) no. 2, pp. 523-539. http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a9/