Integrability of Weight Modules of Degree 1
Journal of Lie theory, Tome 22 (2012) no. 2, pp. 523-539.

Voir la notice de l'article provenant de la source Heldermann Verlag

The aim of this article is to find all weight modules of degree 1 of a simple complex Lie algebra that integrate to a continuous representation of a simply-connected real Lie group on some Hilbert space.
Classification : 22E46, 22E45, 22E47, 17B10
Mots-clés : Weight modules, representations of Lie groups, Gelfand-Kirillov dimension
@article{JLT_2012_22_2_JLT_2012_22_2_a9,
     author = {G. Tomasini },
     title = {Integrability of {Weight} {Modules} of {Degree} 1},
     journal = {Journal of Lie theory},
     pages = {523--539},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a9/}
}
TY  - JOUR
AU  - G. Tomasini 
TI  - Integrability of Weight Modules of Degree 1
JO  - Journal of Lie theory
PY  - 2012
SP  - 523
EP  - 539
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a9/
ID  - JLT_2012_22_2_JLT_2012_22_2_a9
ER  - 
%0 Journal Article
%A G. Tomasini 
%T Integrability of Weight Modules of Degree 1
%J Journal of Lie theory
%D 2012
%P 523-539
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a9/
%F JLT_2012_22_2_JLT_2012_22_2_a9
G. Tomasini . Integrability of Weight Modules of Degree 1. Journal of Lie theory, Tome 22 (2012) no. 2, pp. 523-539. http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a9/