On the Dual Topology of a Class of Cartan Motion Groups
Journal of Lie theory, Tome 22 (2012) no. 2, pp. 491-503
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\g{{\frak g}} Let $(G,K)$ be a compact Riemannian symmetric pair, and let $G_{0}$ be the associated Cartan motion group. Under some assumptions on the pair $(G,K)$, we give a precise description of the set $(\widehat{G_{0}})_{\rm gen}$ of all equivalence classes of generic irreducible unitary representations of $G_{0}$. We also determine the topology of the space $(\g_{0}^{\ddagger}/G_{0})_{gen}$ of generic admissible coadjoint orbits of $G_{0}$ and we show that the bijection between $(\widehat{G_{0}})_{\rm gen}$ and $(\g_{0}^{\ddagger}/G_{0})_{\rm gen}$ is a homeomorphism. Furthermore, in the case where the pair $(G,K)$ has rank one, we prove that the unitary dual $\widehat{G_{0}}$ is homeomorphic to the space $\g_{0}^{\ddagger}/G_{0}$ of all admissible coadjoint orbits of $G_{0}$.
Classification :
53C35, 22D05, 22D30, 53D05
Mots-clés : Symmetric space, motion group, induced representation, coadjoint orbit
Mots-clés : Symmetric space, motion group, induced representation, coadjoint orbit
@article{JLT_2012_22_2_JLT_2012_22_2_a7,
author = {M. Ben Halima and A. Rahali },
title = {On the {Dual} {Topology} of a {Class} of {Cartan} {Motion} {Groups}},
journal = {Journal of Lie theory},
pages = {491--503},
year = {2012},
volume = {22},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a7/}
}
M. Ben Halima; A. Rahali . On the Dual Topology of a Class of Cartan Motion Groups. Journal of Lie theory, Tome 22 (2012) no. 2, pp. 491-503. http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a7/