Admissibility for Monomial Representations of Exponential Lie Groups
Journal of Lie theory, Tome 22 (2012) no. 2, pp. 481-487.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $G$ be a simply connected exponential solvable Lie group, $H$ a closed connected subgroup, and let $\tau$ be a representation of $G$ induced from a unitary character $\chi_f$ of $H$. The spectrum of $\tau$ corresponds via the orbit method to the set $G\cdot A_\tau / G$ of coadjoint orbits that meet the spectral variety $A_\tau = f + {\frak h}^\perp$. We prove that the spectral measure of $\tau $ is absolutely continuous with respect to the Plancherel measure if and only if $H$ acts freely on some point of $A_\tau$. As a corollary we show that if $G$ is nonunimodular, then $\tau$ has admissible vectors if and only if the preceding orbital condition holds.
Classification : 22E25, 22E27
Mots-clés : Exponential Lie groups, coadjoint orbits, monomial representations
@article{JLT_2012_22_2_JLT_2012_22_2_a5,
     author = {B. Currey and V. Oussa },
     title = {Admissibility for {Monomial} {Representations} of {Exponential} {Lie} {Groups}},
     journal = {Journal of Lie theory},
     pages = {481--487},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a5/}
}
TY  - JOUR
AU  - B. Currey
AU  - V. Oussa 
TI  - Admissibility for Monomial Representations of Exponential Lie Groups
JO  - Journal of Lie theory
PY  - 2012
SP  - 481
EP  - 487
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a5/
ID  - JLT_2012_22_2_JLT_2012_22_2_a5
ER  - 
%0 Journal Article
%A B. Currey
%A V. Oussa 
%T Admissibility for Monomial Representations of Exponential Lie Groups
%J Journal of Lie theory
%D 2012
%P 481-487
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a5/
%F JLT_2012_22_2_JLT_2012_22_2_a5
B. Currey; V. Oussa . Admissibility for Monomial Representations of Exponential Lie Groups. Journal of Lie theory, Tome 22 (2012) no. 2, pp. 481-487. http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a5/