Admissibility for Monomial Representations of Exponential Lie Groups
Journal of Lie theory, Tome 22 (2012) no. 2, pp. 481-487
Cet article a éte moissonné depuis la source Heldermann Verlag
Let $G$ be a simply connected exponential solvable Lie group, $H$ a closed connected subgroup, and let $\tau$ be a representation of $G$ induced from a unitary character $\chi_f$ of $H$. The spectrum of $\tau$ corresponds via the orbit method to the set $G\cdot A_\tau / G$ of coadjoint orbits that meet the spectral variety $A_\tau = f + {\frak h}^\perp$. We prove that the spectral measure of $\tau $ is absolutely continuous with respect to the Plancherel measure if and only if $H$ acts freely on some point of $A_\tau$. As a corollary we show that if $G$ is nonunimodular, then $\tau$ has admissible vectors if and only if the preceding orbital condition holds.
Classification :
22E25, 22E27
Mots-clés : Exponential Lie groups, coadjoint orbits, monomial representations
Mots-clés : Exponential Lie groups, coadjoint orbits, monomial representations
@article{JLT_2012_22_2_JLT_2012_22_2_a5,
author = {B. Currey and V. Oussa},
title = {Admissibility for {Monomial} {Representations} of {Exponential} {Lie} {Groups}},
journal = {Journal of Lie theory},
pages = {481--487},
year = {2012},
volume = {22},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a5/}
}
B. Currey; V. Oussa. Admissibility for Monomial Representations of Exponential Lie Groups. Journal of Lie theory, Tome 22 (2012) no. 2, pp. 481-487. http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a5/