On the Codimension Growth of Simple Color Lie Superalgebras
Journal of Lie theory, Tome 22 (2012) no. 2, pp. 465-479.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study polynomial identities of finite dimensional simple color Lie superalgebras over an algebraically closed field of characteristic zero graded by the product of two cyclic groups of order 2. We prove that the codimensions of identities grow exponentially and the rate of exponent equals the dimension of the algebra. A similar result is also obtained for graded identities and graded codimensions.
Classification : 17B01, 17B75, 17B20
Mots-clés : Color Lie superalgebras, polynomial identities, codimensions, exponential growth
@article{JLT_2012_22_2_JLT_2012_22_2_a4,
     author = {D. Pagon and D. Repovs and M. Zaicev },
     title = {On the {Codimension} {Growth} of {Simple} {Color} {Lie} {Superalgebras}},
     journal = {Journal of Lie theory},
     pages = {465--479},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a4/}
}
TY  - JOUR
AU  - D. Pagon
AU  - D. Repovs
AU  - M. Zaicev 
TI  - On the Codimension Growth of Simple Color Lie Superalgebras
JO  - Journal of Lie theory
PY  - 2012
SP  - 465
EP  - 479
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a4/
ID  - JLT_2012_22_2_JLT_2012_22_2_a4
ER  - 
%0 Journal Article
%A D. Pagon
%A D. Repovs
%A M. Zaicev 
%T On the Codimension Growth of Simple Color Lie Superalgebras
%J Journal of Lie theory
%D 2012
%P 465-479
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a4/
%F JLT_2012_22_2_JLT_2012_22_2_a4
D. Pagon; D. Repovs; M. Zaicev . On the Codimension Growth of Simple Color Lie Superalgebras. Journal of Lie theory, Tome 22 (2012) no. 2, pp. 465-479. http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a4/