Homomorphisms of Generalized Verma Modules, BGG Parabolic Category Op and Juhl's Conjecture
Journal of Lie theory, Tome 22 (2012) no. 2, pp. 541-555
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\g{{\frak g}} \def\p{{\frak p}} Let ${\cal M}_\lambda(\g,\p)$, ${\cal M}_\mu(\g^\prime, \p^\prime)$ be the generalized Verma modules for $\g={\rm so}(p+1,q+1), \g^\prime={\rm so}(p,q+1)$ induced from characters $\lambda$ ,$\mu$ of the standard maximal parabolic (conformal) subalgebras $\p$, $\p^\prime=\g^\prime\cap\p$. Motivated by questions about the existence of invariant differential operators in conformal geometry, we explain, reformulate and prove an extended version of Juhl's conjecture on the structure of ${\cal U}(\g^\prime)$-homomorphisms of generalized Verma modules from ${\cal M}_\lambda(\g^\prime,\p^\prime)$ to ${\cal M}_\mu(\g,\p)$. The answer has a natural formulation as a branching problem in the BGG parabolic category ${\cal O}^{\p^\prime}$ rather than the set of generalized Verma modules alone.
Classification :
22E47, 17B10, 13C10
Mots-clés : Branching rules, generalized Verma modules, BGG parabolic category Op, Juhl's conjectures
Mots-clés : Branching rules, generalized Verma modules, BGG parabolic category Op, Juhl's conjectures
@article{JLT_2012_22_2_JLT_2012_22_2_a10,
author = {P. Somberg },
title = {Homomorphisms of {Generalized} {Verma} {Modules,} {BGG} {Parabolic} {Category} {O\protect\textsuperscript{p}} and {Juhl's} {Conjecture}},
journal = {Journal of Lie theory},
pages = {541--555},
year = {2012},
volume = {22},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a10/}
}
TY - JOUR AU - P. Somberg TI - Homomorphisms of Generalized Verma Modules, BGG Parabolic Category Op and Juhl's Conjecture JO - Journal of Lie theory PY - 2012 SP - 541 EP - 555 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a10/ ID - JLT_2012_22_2_JLT_2012_22_2_a10 ER -
P. Somberg . Homomorphisms of Generalized Verma Modules, BGG Parabolic Category Op and Juhl's Conjecture. Journal of Lie theory, Tome 22 (2012) no. 2, pp. 541-555. http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a10/