Structure of the Coadjoint Orbits of Lie Algebras
Journal of Lie theory, Tome 22 (2012) no. 1, pp. 251-268.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study the geometrical structure of the coadjoint orbits of an arbitrary complex or real Lie algebra g containing some ideal n. It is shown that any coadjoint orbit in g* is a bundle with the affine subspace of g* as its fibre. This fibre is an isotropic submanifold of the orbit and is defined only by the coadjoint representations of the Lie algebras g and n on the dual space n*. The use of this fact gives a new insight into the structure of coadjoint orbits and allows us to generalize results derived earlier in the case when g is a semidirect product with an Abelian ideal n. As an application, a necessary condition of integrality of a coadjoint orbit is obtained.
Classification : 57S25, 17B45, 22E45, 53D20
Mots-clés : Coadjoint orbit, integral coadjoint orbit
@article{JLT_2012_22_1_JLT_2012_22_1_a9,
     author = {I. V. Mykytyuk },
     title = {Structure of the {Coadjoint} {Orbits} of {Lie} {Algebras}},
     journal = {Journal of Lie theory},
     pages = {251--268},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_1_JLT_2012_22_1_a9/}
}
TY  - JOUR
AU  - I. V. Mykytyuk 
TI  - Structure of the Coadjoint Orbits of Lie Algebras
JO  - Journal of Lie theory
PY  - 2012
SP  - 251
EP  - 268
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2012_22_1_JLT_2012_22_1_a9/
ID  - JLT_2012_22_1_JLT_2012_22_1_a9
ER  - 
%0 Journal Article
%A I. V. Mykytyuk 
%T Structure of the Coadjoint Orbits of Lie Algebras
%J Journal of Lie theory
%D 2012
%P 251-268
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2012_22_1_JLT_2012_22_1_a9/
%F JLT_2012_22_1_JLT_2012_22_1_a9
I. V. Mykytyuk . Structure of the Coadjoint Orbits of Lie Algebras. Journal of Lie theory, Tome 22 (2012) no. 1, pp. 251-268. http://geodesic.mathdoc.fr/item/JLT_2012_22_1_JLT_2012_22_1_a9/