An Integrability Criterion for Banach-Lie Triple Systems
Journal of Lie theory, Tome 22 (2012) no. 1, pp. 205-244
Voir la notice de l'article provenant de la source Heldermann Verlag
To give a criterion for the integrability of Banach-Lie triple systems, we follow the construction of the period group of a Lie algebra and define the period group of a Lie triple system as an analogous concept. We show that a Lie triple system is integrable if and only if its period group is discrete. Along the way, we see how to turn the path and the loop space of a pointed symmetric space into pointed symmetric spaces.
Classification :
53C35, 22E65
Mots-clés : Banach symmetric space, Lie triple system, period group, path space
Mots-clés : Banach symmetric space, Lie triple system, period group, path space
@article{JLT_2012_22_1_JLT_2012_22_1_a7,
author = {M. Klotz },
title = {An {Integrability} {Criterion} for {Banach-Lie} {Triple} {Systems}},
journal = {Journal of Lie theory},
pages = {205--244},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2012},
url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_1_JLT_2012_22_1_a7/}
}
M. Klotz . An Integrability Criterion for Banach-Lie Triple Systems. Journal of Lie theory, Tome 22 (2012) no. 1, pp. 205-244. http://geodesic.mathdoc.fr/item/JLT_2012_22_1_JLT_2012_22_1_a7/