Towards a Littlewood-Richardson Rule for Kac-Moody Homogeneous Spaces
Journal of Lie theory, Tome 22 (2012) no. 1, pp. 17-8.

Voir la notice de l'article provenant de la source Heldermann Verlag

We prove a general combinatorial formula yielding the intersection number c(u,v,w) of three particular Λ-minuscule Schubert classes in any Kac-Moody homogeneous space, generalising the Littlewood-Richardson rule. The combinatorics are based on jeu de taquin rectification in a poset defined by the heap of w.
Classification : 14M15, 14N35
Mots-clés : Littlewood-Richardson rule, Schubert calculus, Kac-Moody homogeneous spaces, jeu de taquin
@article{JLT_2012_22_1_JLT_2012_22_1_a1,
     author = {P.-E. Chaput and N. Perrin },
     title = {Towards a {Littlewood-Richardson} {Rule} for {Kac-Moody} {Homogeneous} {Spaces}},
     journal = {Journal of Lie theory},
     pages = {17--8},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_1_JLT_2012_22_1_a1/}
}
TY  - JOUR
AU  - P.-E. Chaput
AU  - N. Perrin 
TI  - Towards a Littlewood-Richardson Rule for Kac-Moody Homogeneous Spaces
JO  - Journal of Lie theory
PY  - 2012
SP  - 17
EP  - 8
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2012_22_1_JLT_2012_22_1_a1/
ID  - JLT_2012_22_1_JLT_2012_22_1_a1
ER  - 
%0 Journal Article
%A P.-E. Chaput
%A N. Perrin 
%T Towards a Littlewood-Richardson Rule for Kac-Moody Homogeneous Spaces
%J Journal of Lie theory
%D 2012
%P 17-8
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2012_22_1_JLT_2012_22_1_a1/
%F JLT_2012_22_1_JLT_2012_22_1_a1
P.-E. Chaput; N. Perrin . Towards a Littlewood-Richardson Rule for Kac-Moody Homogeneous Spaces. Journal of Lie theory, Tome 22 (2012) no. 1, pp. 17-8. http://geodesic.mathdoc.fr/item/JLT_2012_22_1_JLT_2012_22_1_a1/