Towards a Littlewood-Richardson Rule for Kac-Moody Homogeneous Spaces
Journal of Lie theory, Tome 22 (2012) no. 1, pp. 17-8
Cet article a éte moissonné depuis la source Heldermann Verlag
We prove a general combinatorial formula yielding the intersection number c(u,v,w) of three particular Λ-minuscule Schubert classes in any Kac-Moody homogeneous space, generalising the Littlewood-Richardson rule. The combinatorics are based on jeu de taquin rectification in a poset defined by the heap of w.
Classification :
14M15, 14N35
Mots-clés : Littlewood-Richardson rule, Schubert calculus, Kac-Moody homogeneous spaces, jeu de taquin
Mots-clés : Littlewood-Richardson rule, Schubert calculus, Kac-Moody homogeneous spaces, jeu de taquin
@article{JLT_2012_22_1_JLT_2012_22_1_a1,
author = {P.-E. Chaput and N. Perrin },
title = {Towards a {Littlewood-Richardson} {Rule} for {Kac-Moody} {Homogeneous} {Spaces}},
journal = {Journal of Lie theory},
pages = {17--8},
year = {2012},
volume = {22},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_1_JLT_2012_22_1_a1/}
}
P.-E. Chaput; N. Perrin . Towards a Littlewood-Richardson Rule for Kac-Moody Homogeneous Spaces. Journal of Lie theory, Tome 22 (2012) no. 1, pp. 17-8. http://geodesic.mathdoc.fr/item/JLT_2012_22_1_JLT_2012_22_1_a1/