The Integrability of the Periodic Full Kostant-Toda Lattice on a Simple Lie Algebra
Journal of Lie theory, Tome 21 (2011) no. 4, pp. 929-96
Cet article a éte moissonné depuis la source Heldermann Verlag
We define the periodic Full Kostant-Toda lattice on every simple Lie algebra, and show its Liouville integrability. More precisely we show that this lattice is given by a Hamiltonian vector field, associated to a Poisson bracket which results from an R-matrix. We construct a large family of constants of motion which we use to prove the Liouville integrability of the system with the help of several results on simple Lie algebras, R-matrices, invariant functions and root systems.
Classification :
17B20,17B80,53D17
Mots-clés : Periodic Full Kostant-Toda lattice, integrable system, R-matrix, simple Lie algebra
Mots-clés : Periodic Full Kostant-Toda lattice, integrable system, R-matrix, simple Lie algebra
@article{JLT_2011_21_4_JLT_2011_21_4_a9,
author = {K. Ben Abdeljelil },
title = {The {Integrability} of the {Periodic} {Full} {Kostant-Toda} {Lattice} on a {Simple} {Lie} {Algebra}},
journal = {Journal of Lie theory},
pages = {929--96},
year = {2011},
volume = {21},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a9/}
}
TY - JOUR AU - K. Ben Abdeljelil TI - The Integrability of the Periodic Full Kostant-Toda Lattice on a Simple Lie Algebra JO - Journal of Lie theory PY - 2011 SP - 929 EP - 96 VL - 21 IS - 4 UR - http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a9/ ID - JLT_2011_21_4_JLT_2011_21_4_a9 ER -
K. Ben Abdeljelil . The Integrability of the Periodic Full Kostant-Toda Lattice on a Simple Lie Algebra. Journal of Lie theory, Tome 21 (2011) no. 4, pp. 929-96. http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a9/