Automorphism Groups of Causal Makarevich Spaces
Journal of Lie theory, Tome 21 (2011) no. 4, pp. 885-904
Cet article a éte moissonné depuis la source Heldermann Verlag
The Shilov boundary M- of an irreducible bounded symmetric domain D of tube type is a flag manifold of a simple Lie group G(D) of Hermitian type. M- has a natural G(D)-invariant causal structure. By a causal Makarevich space, we mean an open symmetric orbit in M- under a reductive subgroup of G(D), endowed with the causal structure induced from that of the ambient space M-. All symmetric cones in simple Euclidean Jordan algebras fall into the class of causal Makarevich spaces. We associate a causal structure with a certain G-structure. Based on this, we obtain the Liouville-type theorem for the causal structure on M-, asserting the unique global extension of a local causal automorphism on M-. By using this, we determine the causal automorphism groups of all causal Makarevich spaces.
Classification :
17C37, 53C10, 53C15, 53C35, 32M15
Mots-clés : Causal structure, G-structure, Cartan geometry, Liouville-type theorem, symmetric cone, causal Makarevich space
Mots-clés : Causal structure, G-structure, Cartan geometry, Liouville-type theorem, symmetric cone, causal Makarevich space
@article{JLT_2011_21_4_JLT_2011_21_4_a7,
author = {S. Kaneyuki },
title = {Automorphism {Groups} of {Causal} {Makarevich} {Spaces}},
journal = {Journal of Lie theory},
pages = {885--904},
year = {2011},
volume = {21},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a7/}
}
S. Kaneyuki . Automorphism Groups of Causal Makarevich Spaces. Journal of Lie theory, Tome 21 (2011) no. 4, pp. 885-904. http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a7/