Unitary Representations and the Heisenberg Parabolic Subgroup
Journal of Lie theory, Tome 21 (2011) no. 4, pp. 847-86.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study the restriction of an irreducible unitary representation $\pi$ of the universal covering $\widetilde{Sp}_{2n}(\R)$ to a Heisenberg maximal parabolic subgroup $\tilde P$. We prove that if $\pi|_{\tilde P}$ is irreducible, then $\pi$ must be a highest weight module or a lowest weight module. This is in sharp contrast with the GL$_n(\R)$ case. In addition, we show that for a unitary highest or lowest weight module, $\pi|_{\tilde P}$ decomposes discretely. We also treat the groups $U(p,q)$ and $O^*(2n)$.
Classification : 22E45, 43A80
Mots-clés : Parabolic subgroups, Heisenberg group, Mackey analysis, branching formula, unitary representations, Kirillov Conjecture, symplectic group, highest weight module
@article{JLT_2011_21_4_JLT_2011_21_4_a5,
     author = {H. He },
     title = {Unitary {Representations} and the {Heisenberg} {Parabolic} {Subgroup}},
     journal = {Journal of Lie theory},
     pages = {847--86},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a5/}
}
TY  - JOUR
AU  - H. He 
TI  - Unitary Representations and the Heisenberg Parabolic Subgroup
JO  - Journal of Lie theory
PY  - 2011
SP  - 847
EP  - 86
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a5/
ID  - JLT_2011_21_4_JLT_2011_21_4_a5
ER  - 
%0 Journal Article
%A H. He 
%T Unitary Representations and the Heisenberg Parabolic Subgroup
%J Journal of Lie theory
%D 2011
%P 847-86
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a5/
%F JLT_2011_21_4_JLT_2011_21_4_a5
H. He . Unitary Representations and the Heisenberg Parabolic Subgroup. Journal of Lie theory, Tome 21 (2011) no. 4, pp. 847-86. http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a5/