Reducibility of Generic Unipotent Standard Modules
Journal of Lie theory, Tome 21 (2011) no. 4, pp. 837-846.

Voir la notice de l'article provenant de la source Heldermann Verlag

Using Lusztig's geometric classification, we find the reducibility points of a standard module for the affine Hecke algebra, in the case when the inducing data is generic. This recovers the known result of Muic and Shahidi for representations of split p-adic groups with Iwahori-spherical Whittaker vectors. We also give a necessary (but insufficient) condition for reducibility in the non-generic case.
Classification : 22E50
Mots-clés : Whittaker models, unipotent representations, graded affine Hecke algebra
@article{JLT_2011_21_4_JLT_2011_21_4_a4,
     author = {D. Barbasch and D. Ciubotaru },
     title = {Reducibility of {Generic} {Unipotent} {Standard} {Modules}},
     journal = {Journal of Lie theory},
     pages = {837--846},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a4/}
}
TY  - JOUR
AU  - D. Barbasch
AU  - D. Ciubotaru 
TI  - Reducibility of Generic Unipotent Standard Modules
JO  - Journal of Lie theory
PY  - 2011
SP  - 837
EP  - 846
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a4/
ID  - JLT_2011_21_4_JLT_2011_21_4_a4
ER  - 
%0 Journal Article
%A D. Barbasch
%A D. Ciubotaru 
%T Reducibility of Generic Unipotent Standard Modules
%J Journal of Lie theory
%D 2011
%P 837-846
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a4/
%F JLT_2011_21_4_JLT_2011_21_4_a4
D. Barbasch; D. Ciubotaru . Reducibility of Generic Unipotent Standard Modules. Journal of Lie theory, Tome 21 (2011) no. 4, pp. 837-846. http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a4/