Reducibility of Generic Unipotent Standard Modules
Journal of Lie theory, Tome 21 (2011) no. 4, pp. 837-846
Cet article a éte moissonné depuis la source Heldermann Verlag
Using Lusztig's geometric classification, we find the reducibility points of a standard module for the affine Hecke algebra, in the case when the inducing data is generic. This recovers the known result of Muic and Shahidi for representations of split p-adic groups with Iwahori-spherical Whittaker vectors. We also give a necessary (but insufficient) condition for reducibility in the non-generic case.
Classification :
22E50
Mots-clés : Whittaker models, unipotent representations, graded affine Hecke algebra
Mots-clés : Whittaker models, unipotent representations, graded affine Hecke algebra
@article{JLT_2011_21_4_JLT_2011_21_4_a4,
author = {D. Barbasch and D. Ciubotaru },
title = {Reducibility of {Generic} {Unipotent} {Standard} {Modules}},
journal = {Journal of Lie theory},
pages = {837--846},
year = {2011},
volume = {21},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a4/}
}
D. Barbasch; D. Ciubotaru . Reducibility of Generic Unipotent Standard Modules. Journal of Lie theory, Tome 21 (2011) no. 4, pp. 837-846. http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a4/