Cohomology and Deformations of Hom-algebras
Journal of Lie theory, Tome 21 (2011) no. 4, pp. 813-836.

Voir la notice de l'article provenant de la source Heldermann Verlag

The purpose of this paper is to define cohomology structures on Hom-associative algebras and Hom-Lie algebras. The first and second coboundary maps were introduced by Makhlouf and Silvestrov in the study of one-parameter formal deformations theory. Among the relevant formulas for a generalization of Hochschild cohomology for Hom-associative algebras and a Chevalley-Eilenberg cohomology for Hom-Lie algebras, we define a Gerstenhaber bracket on the space of multilinear mappings of Hom-associative algebras and a Nijenhuis-Richardson bracket on the space of multilinear maps of Hom-Lie algebras. Also we enhance the deformation theory of this Hom-algebras by studying the obstructions.
Classification : 16S80,16E40,17B37,17B68
Mots-clés : Hom-Lie algebra, cohomology, deformation
@article{JLT_2011_21_4_JLT_2011_21_4_a3,
     author = {F. Ammar and Z. Ejbehi and A. Makhlouf },
     title = {Cohomology and {Deformations} of {Hom-algebras}},
     journal = {Journal of Lie theory},
     pages = {813--836},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a3/}
}
TY  - JOUR
AU  - F. Ammar
AU  - Z. Ejbehi
AU  - A. Makhlouf 
TI  - Cohomology and Deformations of Hom-algebras
JO  - Journal of Lie theory
PY  - 2011
SP  - 813
EP  - 836
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a3/
ID  - JLT_2011_21_4_JLT_2011_21_4_a3
ER  - 
%0 Journal Article
%A F. Ammar
%A Z. Ejbehi
%A A. Makhlouf 
%T Cohomology and Deformations of Hom-algebras
%J Journal of Lie theory
%D 2011
%P 813-836
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a3/
%F JLT_2011_21_4_JLT_2011_21_4_a3
F. Ammar; Z. Ejbehi; A. Makhlouf . Cohomology and Deformations of Hom-algebras. Journal of Lie theory, Tome 21 (2011) no. 4, pp. 813-836. http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a3/