Cohomology and Deformations of Hom-algebras
Journal of Lie theory, Tome 21 (2011) no. 4, pp. 813-836
Cet article a éte moissonné depuis la source Heldermann Verlag
The purpose of this paper is to define cohomology structures on Hom-associative algebras and Hom-Lie algebras. The first and second coboundary maps were introduced by Makhlouf and Silvestrov in the study of one-parameter formal deformations theory. Among the relevant formulas for a generalization of Hochschild cohomology for Hom-associative algebras and a Chevalley-Eilenberg cohomology for Hom-Lie algebras, we define a Gerstenhaber bracket on the space of multilinear mappings of Hom-associative algebras and a Nijenhuis-Richardson bracket on the space of multilinear maps of Hom-Lie algebras. Also we enhance the deformation theory of this Hom-algebras by studying the obstructions.
Classification :
16S80,16E40,17B37,17B68
Mots-clés : Hom-Lie algebra, cohomology, deformation
Mots-clés : Hom-Lie algebra, cohomology, deformation
@article{JLT_2011_21_4_JLT_2011_21_4_a3,
author = {F. Ammar and Z. Ejbehi and A. Makhlouf },
title = {Cohomology and {Deformations} of {Hom-algebras}},
journal = {Journal of Lie theory},
pages = {813--836},
year = {2011},
volume = {21},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a3/}
}
F. Ammar; Z. Ejbehi; A. Makhlouf . Cohomology and Deformations of Hom-algebras. Journal of Lie theory, Tome 21 (2011) no. 4, pp. 813-836. http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a3/